Searching with Partial Information
(not a focus of this class, but good to be aware of)

• Multiple state problems
 – Several possible initial states
• Contingency problems
 – Several possible outcomes for each action
• Exploration problems
 – Outcomes of actions not known \textit{a priori}, must be discovered by trying them
Example

- Initial state may not be detectable
 - Suppose sensors for a nuclear reactor fail
 - Need *safe* shutdown sequence despite ignorance of some aspects of state

- This complicates search *enormously*

- In the worst case, contingent solution could cover the entire state space

State Sets

- Idea:
 - Maintain a set of candidate states
 - Each search node represents a set of states
 - Can be hard to manage if state sets get large
- If states have probabilistic outcomes, we maintain a probability distribution over states
Searching in Unknown Environments
(not a focus of this class, but good to be aware of)

• What if we don’t know the consequences of actions before we try them?
• Often called on-line search
• Goal: Minimize competitive ratio
 – Actual distance/distance traveled if model known
 – Problematic if actions are irreversible
 – Problematic if links can have unbounded cost

Optimization
(Not directly a topic of this class, but used later)

• Want to find the “best” state
• Solution is more important than path, but
• Some solutions are better than others
• Interested in minimizing or maximizing some function of the problem state
 – Find a protein with a desirable property
 – Optimize circuit layout

• History of search steps not worth the trouble
State Space Landscape

Goal: Find values of problem features that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

- Idea: Try to climb up the state space landscape (often in axis-parallel directions) to find a setting of the problem features with high value.
- Approaches:
 - Steepest ascent
 - Stochastic – pick one of the good ones
 - First choice
- This is a *greedy* procedure
Limitations of Hill Climbing

- Local maxima
- Ridges – direction of ascent is at 45 degree angle to any of the local changes
- Plateaux – flat expanses

Getting Unstuck

- Random restarts
- Simulated annealing for minimization (maximization)
 - Take uphill (downhill) moves with small probability
 - Probability of moving uphill (downhill) decreases with
 - Number of iterations
 - Steepness of uphill (downhill) move
 - If system is “cooled” slowly enough, will find global optimum w.p. 1
 - Motivated by the annealing of metals and glass, where annealing reduces potential energy stored in chemical/physical structures, making substance more ductile and less brittle
Genetic Algorithms

- GAs run hot and cold (cold now, hotish in 90’s)
- Biological metaphors to motivate search
- Organism is a word from a finite alphabet (organisms = states)
- Fitness of organism measures its performance on task (fitness = objective)
- Uses multiple organisms (parallel search)
- Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:

Randomly select organisms for “reproduction” in accordance with their fitness. More “fit” individuals are more likely to reproduce.

Reproduction is sexual and involves crossover:

Organism 1: \[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}\]

Organism 2: \[\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}\]

Offspring: \[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{array}\]
Is this a good idea?

• Has worked well in some examples
• Can be very brittle
 – Representations must be carefully engineered
 – Sensitive to mutation rate
 – Sensitive to details of crossover mechanism
• For the same amount of work, stochastic variants of hill climbing sometimes do better
• Hard to analyze; needs more rigorous study

• Compare with neural network hype cycle

Continuous Spaces

• In continuous spaces, we don’t need to “probe” to find the values of local changes

• If we have a closed-form expression for our objective function, we can use the calculus

• Suppose objective function is: \[f(x_1, y_1, x_2, y_2, x_3, y_3) \]

• Gradient tells us direction and steepness of change

\[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right) \]
Gradient Descent in Continuous Space

- Minimize $y = f(x)$
- Move in opposite direction of derivative $df/dx(x)$

\[\frac{df}{dx}(x_1) \]

\[x_1 \quad x_2 \]

\[y \]

\[x \]
Gradient Descent in Continuous Space

- Minimize $y = f(x)$
- Move in opposite direction of derivative $\frac{df}{dx}(x)$
Gradient Descent in Continuous Space

- Minimize $y = f(x)$
- Move in opposite direction of derivative $df/dx(x)$
Gradient: analogue of derivative in multivariate functions $f(x_1,\ldots,x_n)$

Direction that you would move x_1,\ldots,x_n to make the steepest increase in f

Algorithm for Gradient Descent

- **Input**: continuous *objective function* f, initial point $x^0=(x_1^0,\ldots,x_n^0)$
- **For** $t=0,\ldots,N-1$:
 - Compute gradient vector $g^t=(\partial f/\partial x_1(x^t),\ldots,\partial f/\partial x_n(x^t))$
 - If the length of g^t is small enough [convergence]
 - Return x^t
 - Pick a step size α^t
 - Let $x^{t+1} = x^t - \alpha^t g^t$

"Industrial strength" optimization software uses more sophisticated techniques to use higher derivatives, handle constraints, deal with particular function classes, etc.
Search Conclusions

- Search = most general purpose technique in existence
- Everything can be formulated as a search problem, from sorting to curing cancer
- Search techniques have been specialized to match different types of problems

- Be a smart consumer of search:
 - Specifying your problem clearly
 - Find the technique that matches your problem