Reinforcement Learning

Ron Parr
CompSci 370
Department of Computer Science
Duke University

With thanks to Kris Hauser for some content

RL Highlights

• Everybody likes to learn from experience
• Use ML techniques to generalize from relatively small amounts of experience

• Some notable successes:
 – Backgammon, Go
 – Flying a helicopter upside down
 – Atari Games

• Sutton & Barto RL Book is the 7th most cited CS reference in CiteSeerX

From Andrew Ng’s home page
Comparison w/Other Kinds of Learning

• Learning often viewed as:
 – Classification (supervised), or
 – Model learning (unsupervised)

• RL is between these (delayed signal)

• What the last thing that happens before an accident?

Why We Need RL

• Where do we get transition probabilities?

• How do we store them?
 • Big problems have big models
 • Model size is quadratic in state space size

• Where do we get the reward function?
RL Framework

- Learn by “trial and error”
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL for Our Game Show

- Problem: We don’t know probability of answering correctly

- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game

Source: Wikipedia page For “Who Wants to be a Millionaire”
Model Learning Approach

- Learn model, solve
- How to learn a model:
 - Take action a in state s, observe s'
 - Take action a in state s, n times
 - Observe s' m times
 - $P(s'|s,a) = m/n$
 - Fill in transition matrix for each action
 - Compute avg. reward for each state
- Solve learned model as an MDP (previous lecture)

Limitations of Model Learning

- Partitions learning, solution into two phases
- Model may be large
 - Hard to visit every state lots of times
 - Note: Can’t completely get around this problem...
- Model storage is expensive
- Model manipulation is expensive
First steps: Passive RL

- Observe execution **trials** of an agent that acts according to some unobserved policy \(p \)
- Problem: estimate the value function \(V^\pi \)

Recall

\[
V^\pi(s) = \mathbb{E}_{S_t}[\gamma^t R(S_t)]
\]

where \(S_t \) is the random variable denoting the distribution of states at time \(t \)

Direct Utility Estimation

1. Observe trials \(t^{(i)} = (s_0^{(i)}, a_1^{(i)}, s_1^{(i)}, r_1^{(i)}, ..., a_t^{(i)}, s_t^{(i)}, r_t^{(i)}) \) for \(i=1, ..., n \)
2. For each state \(s \in S \):
 3. Find all trials \(t^{(i)} \) that pass through \(s \)
 4. Compute subsequent value \(V^{(i)}(s) = S_{t=0}^{t=k} \gamma^k r_t^{(i)} \)
 5. Set \(V^\pi(s) \) to the average observed values

Limitations: Clunky, learns only when an end state is reached
Incremental (“Online”) Function Learning

- Data is streaming into learner
 \[x_1, y_1, \ldots, x_n, y_n \quad y_i = f(x_i) \]
- Observes \(x_{n+1} \) and must make prediction for next time step \(y_{n+1} \)
- “Batch” approach:
 - Store all data at step \(n \)
 - Use your learner of choice on all data up to time \(n \), predict for time \(n+1 \)
- Can we do this using less memory?

Example: Mean Estimation

- \(y_i = \theta + \text{error term} \) (no \(x \)'s)
- Current estimate \(\theta_n = \frac{1}{n} \sum_{i=1}^{n} y_i \)

\[
\theta_{n+1} = \frac{1}{(n+1)} \sum_{i=1}^{n+1} y_i \\
= \frac{1}{(n+1)} (y_{n+1} + \sum_{i=1}^{n} y_i) \\
= \frac{1}{(n+1)} (y_{n+1} + n \theta_n) \\
= \theta_n + \frac{1}{(n+1)} (y_{n+1} - \theta_n)
\]
Example: Mean Estimation

- $y_i = \theta + \text{error term}$ (no x's)
- Current estimate $\theta_n = \frac{1}{n} \sum_{i=1}^{n} y_i$

\[
\theta_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} y_i \\
= \frac{1}{n+1} (y_{n+1} + \sum_{i=1}^{n} y_i) \\
= \frac{1}{n+1} (y_{n+1} + n \theta_n) \\
= \theta_n + \frac{1}{n+1} (y_{n+1} - \theta_n)
\]
Example: Mean Estimation

- $\theta_{n+1} = \theta_n + \frac{1}{n+1} (y_{n+1} - \theta_n)$
- Only need to store n, θ_n

Learning Rates

- In fact, $\theta_{n+1} = \theta_n + \alpha_n (y_{n+1} - \theta_n)$ converges to the mean for any α_n such that:
 - $\alpha_n \to 0$ as $n \to \infty$
 - $\sum \alpha_n \to \infty$
 - $\sum \alpha_n^2 \to C < \infty$
- $O(1/n)$ does the trick
- If α_n is close to 1, then the estimate shifts strongly to recent data; close to 0, and the old estimate is preserved
Online Implementation

1. Store counts \(N[s] \) and estimated values \(V^\pi(s) \)
2. After a trial \(t \), for each state \(s \) in the trial:
 3. \(N[s] \leftarrow N[s]+1 \)
 4. Adjust value \(V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(V^\pi(s)-V^\pi(s)) \)

- Simple averaging
- Slow learning, because Bellman equation is not used to pass knowledge between adjacent states

Temporal Difference Learning

1. Store counts \(N[s] \) and estimated values \(V^\pi(s) \)
2. For each observed transition \((s,r,a,s') \):
 3. \(N[s] \leftarrow N[s]+1 \)
 4. Adjust value \(V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s)) \)

\[V_{t+1}(s) = R(s) + \gamma \sum_{a \in \text{valid}(s,a)} P(s'|s,a) V_t(s') \]

- Instead of averaging at the level of trajectories...
- Average at the level of states
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s) + \alpha(N[s])(r + \gamma V^\pi(s') - V^\pi(s))$

With learning rate

\[\alpha = 0.5 \]
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):

 3. Set $N[s] \leftarrow N[s] + 1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s) + \alpha(N[s])(r + \gamma V^\pi(s') - V^\pi(s))$

With learning rate $\alpha = 0.5$
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s))$

With learning rate $\alpha=0.5$

After a second trajectory from start to $+1$

With learning rate $\alpha=0.5$

After a third trajectory from start to $+1$
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s))$

With learning rate $\alpha=0.5$

Our luck starts to run out on the fourth trajectory

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.23</td>
<td>-0.03</td>
<td>-0.08</td>
</tr>
<tr>
<td>2</td>
<td>-0.62</td>
<td>0.19</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.42</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

But we recover...

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.23</td>
<td>-0.03</td>
<td>-0.08</td>
</tr>
<tr>
<td>2</td>
<td>-0.62</td>
<td>0.19</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.42</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s))$

- For any s, distribution of s' approaches $P(s'|s,\pi(s))$
- Uses relationships between adjacent states to adjust utilities toward equilibrium
- Unlike direct estimation, learns before trial is terminated

Using TD for Control

- Recall value iteration:
 $$V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s')$$

- Why not pick the maximizing a and then do:
 $$V(s) = V(s) + \alpha(N(s))(r + \gamma V(s') - V(s))$$
 – s' is the observed next state after taking action a
What breaks?

• Action selection
 – How do we pick a?
 – Need to P(s'|s,a), but the reason why we’re doing RL is that we don’t know this!

• Even if we magically knew the best action:
 – Can only learn the value of the policy we are following
 – If initial guess for V suggests a stupid policy, we’ll never learn otherwise

Q-Values

• Learning V is not enough for action selection because a transition model is needed
• Solution: learn Q-values: Q(s,a) is the utility of choosing action a in state s
• “Shift” Bellman equation
 – V(s) = max_a Q(s,a)
 – Q(s,a) = R(s) + γ Σ_{s'} P(s'|s,a) max_{a'} Q(s',a')

• So far, everything is the same... but what about the learning rule?
Q-learning Update

- Recall TD:
 - Update: \(V(s) \leftarrow V(s) + \alpha(N[s])(r + \gamma V(s') - V(s)) \)
 - Use \(P \) to pick actions? \(a \leftarrow \text{arg max}_a \sum_{s'} P(s' | s, a) V(s') \)
- Q-Learning:
 - Update: \(Q(s, a) \leftarrow Q(s, a) + \alpha(N[s, a])(r + \gamma \max_{a'} Q(s', a') - Q(s, a)) \)
 - Select action: \(a \leftarrow \text{arg max}_a Q(s, a) \)
- Key difference: average over \(P(s' | s, a) \) is “baked in” to the \(Q \) function
- Q-learning is therefore a model-free active learner

Q-learning vs. TD-learning

- TD converges to value of policy you are following
- Q-learning converges to values of optimal policy independent of whatever policy you follow during learning!
- Caveats:
 - Converges in limit, assuming all states are visited infinitely often
 - In case of Q-learning, all states and actions must be tried infinitely often

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical
Brief Comments on Learning from Demonstration

• LfD is a powerful method to convey human expertise to (ro)bots

• Useful for imitating human policies

• Less useful for surpassing human ability (but can smooth out noise in human demos)

• Used, e.g., for acrobatic helicopter flight

Advanced (but unavoidable) Topics

• Exploration vs. Exploitation

• Value function approximation
Exploration vs. Exploitation

- Greedy strategy purely **exploits** its current knowledge
 - The quality of this knowledge improves only for those states that the agent observes often

- A good learner must perform **exploration** in order to improve its knowledge about states that are not often observed
 - But pure exploration is useless (and costly) if it is never exploited

Restaurant Problem
Exploration vs. Exploitation in Practice

• Can assign an “exploration bonus” to parts of the world you haven’t seen much

• In practice ϵ-greedy action selection is used most often

Value Function Representation

• Fundamental problem remains unsolved:
 – TD/Q learning solves model-learning problem, but
 – Large models still have large value functions
 – Too expensive to store these functions
 – Impossible to visit every state in large models

• Function approximation
 – Use machine learning methods to generalize
 – Avoid the need to visit every state
Function Approximation

- General problem: Learn function \(f(s) \)
 - Linear regression
 - Neural networks
 - State aggregation (violates Markov property)

- Idea: Approximate \(f(s) \) with \(g(s; w) \)
 - \(g \) is some easily computable function of \(s \) and \(w \)
 - Try to find \(w \) that minimizes the error in \(g \)

Linear Regression Overview

(more when we do machine learning)

- Define a set of basis functions (vectors)
 \(\varphi_1(s), \varphi_2(s) \ldots \varphi_k(s) \)

- Approximate \(f \) with a weighted combination of these
 \(g(s; w) = \sum_{j=1}^{k} w_j \varphi_j(s) \)

- Example: Space of quadratic functions:
 \(\varphi_1(s) = 1, \varphi_2(s) = s, \varphi_3(s) = s^2 \)

- Orthogonal projection minimizes SSE
Updates with Approximation

• Recall regular TD update:

\[V(s) \leftarrow V(s) + \alpha(N[s])(r + \gamma V(s') - V(s)) \]

• With function approximation:

\[V(s) \approx V(s; w) \]

• Update:

\[w^{i+1} = w^i + \alpha (r + \gamma V(s'; w) - V(s; w)) \nabla_w V(s; w) \]

Neural networks are a special case of this.

For linear value functions

• Gradient is trivial:

\[V(s; w) = \sum_{j=1}^{k} w_j \varphi_j(s) \]

\[\nabla_{w_j} V(s; w) = \varphi_j(s) \]

• Update is trivial:

\[w_j^{i+1} = w_j^i + \alpha (r + \gamma V(s'; w) - V(s; w)) \varphi_j(s) \]
Properties of approximate RL

• Exact case (tabular representation) = special case
• Can be combined with Q-learning

• Convergence not guaranteed
 – Policy evaluation with linear function approximation converges if samples are drawn “on policy”
 – In general, convergence is not guaranteed
 • Chasing a moving target
 • Errors can compound
• Success has traditionally required very carefully chosen features
• Deepmind has recently had success using no feature engineering but lots of training data

How’d They Do That???

• Backgammon (Tesauro)
 – Neural network value function approximation
 – TD sufficient (known model)
 – Carefully selected inputs to neural network
 – About 1 million games played against self
• Atari games (DeepMind)
 – Used convolutional neural network for Q-functions
 – O(days) of play time per game
• Helicopter (Ng et al.)
 – Learning from expert demonstrations
 – Constrained policy space
 – Trained on a simulator
Conclusions

- Reinforcement learning solves an MDP
- Converges for exact value function representation
- Can be combined with approximation methods
- Good results require good features and/or lots of data