Lecture: Amortized Analysis

- Amortized Analysis
- Aggregate Method
- Accounting Method
- Potential Method

These notes are hand-written, unedited and sketchy. They are primarily used for, and based on my lectures.

If you find any bug, impreciseness, or a rare poor-/mis-interpretation of facts, please let me know. I will be grateful for any additional comments you have that are intended to make the quality of the notes better.

Please note that I will provide my hand-written lecture notes only for a subset of my lectures, not for all lectures. Therefore, it is your responsibility to attend all the lectures, take notes regularly, and ask me and/or the TAs if you have any questions.

Thank you!
--Chittu

Written using an Intuos 5 Touch Pen Tablet and Microsoft Office OneNote
Amortized Analysis

* Suppose we have a data structure that supports
 a set of basic operations, e.g., INSERT, DELETE, SEARCH.

* We have analyzed the worst case cost of these
 operations in many cases, e.g.,
 - $O(1)$ time for SEARCH in BST
 - $O(\log n)$ time for SEARCH in Red-Black Trees

* How about analyzing the average performance
 of each operation in the worst case?

 - Why? Although an individual operation can be
 expensive, on average the cost/operation is small
 in many cases.

* Note: “Average” here means “average cost/op.” We
 are NOT averaging over a distribution of inputs.
 Therefore,
 1) No probability involved
 2) Goal is to analyze average cost in the
 worst case.

* The amortized cost per operation for a sequence of
 n operations is the total cost of these n operations
 divided by n.
Methods to Compute Amortized Cost:

- The Summation/Aggregate Method aka Engineer’s method
- The Taxation/Accounting Method aka Banker’s Method
- The Potential Method aka Physicist’s method

The Summation/Aggregate Method: aka Engineer’s Method

(Simplest) Idea:

Let \(T(n) = \) total worst case cost over a sequence of \(n \) operations.

Then, the amortized cost per operation = \(\frac{T(n)}{n} \).

Example: Implementing a queue using two stacks:

- \(S_1 \) and \(S_2 \) are two stacks
- Operations on \(S_1 \) and \(S_2 \):
 - \(S.\text{push}(x) \): \(O(1) \) cost/\(\text{op} \).
 - \(S.\text{pop}() \): \(O(n) \) cost/\(\text{op} \).
- Queue operation to be supported: \(\text{ENQUEUE} \) and \(\text{DEQUEUE} \).
- We use \(S_1 \) for \(\text{ENQUEUE} \) and \(S_2 \) for \(\text{DEQUEUE} \).
• Implementation:
 ° ENQUEUE is pushing the element to S_1.
 ° DEQUEUE is popping the element from S_2.

 • What if S_2 is empty?

 ° Transfer the entire content of S_1 to S_2.
 ° Then do pop operation.

• Observation 1: The order of elements placed in S_2 is just the opposite of the order when the elements were in S_1.

• Observation 2: Life cycle of an element x:

 ° Stage 1: x is pushed into S_1, i.e., ENQUEUED.

 ° Stage 2: x is popped from S_1, and is to be pushed into S_2.

 ° Stage 3: x is pushed into S_2.

 ° Stage 4: x is popped from S_2, i.e., DEQUEUED finally.

• Pseudocode:

 ENQUEUE(S_1, S_2, x)

 1. PUSH(S_1, x)

 DEQUEUE(S_1, S_2)

 1. IF $\neg S_2$·EMPTY()

 2. RETURN S_2·POPC()

 3. ELSE // S_2 empty. Transfer from S_1 to S_2.

 4. IF S_1·EMPTY()

 5. Error "Queue is empty"

 6. ELSE WHILE $\neg S_1$·EMPTY()

 7. $x \leftarrow S_1$·POPC()

 8. S_2·PUSH(x)

 9. RETURN S_2·POPC()
Claim: The amortized cost of ENQUEUE and DEQUEUE is O(1)

Proof:

- Each element goes through 2 Push + 2 Pop during its life time.
- Let cost of Push and Pop be 1 unit each.
- n ENQUEUES and ≤ n DEQUEUES.

- Cost (n ENQUEUE) = cost (n PUSH) ⇒ Cost (1 ENQUEUE) = \(\frac{n}{n} = 1\).
- Cost (n DEQUEUE) = Cost ((1 PUSH + 2 POP) * n) = 3n
 ⇒ Cost (1 DEQUEUE) = \(\frac{3n}{n} = 3\). \(\text{Constant}\)

∴ amortized cost for ENQUEUE and DEQUEUE is O(1)

The Taxation/Accounting Method: aka Banker's Method

Idea: Certain operations on the data structure charge you taxes, so that the total cost of maintaining the data structure is never more than the total taxes you pay.

∴ the amortized cost of an operation is the overall tax you pay during that operation.

Key to this method: Find an appropriate “tax schedule.”
- Different operations charge different taxes.
 - Some charge more than actual cost
 - Some charge less
- Amortized cost = amount of tax charged
- Credit is stored in the data structure, when amortized cost > actual cost.
- The stored credit is later used to pay for operations whose actual cost > amortized cost.
- Must note: Credit CANNOT go negative. Why?
 - Otherwise, over a sequence of n operations, the amortized cost is not an upper bound of actual cost.
 - So, analysis becomes meaningless!
- Let $c_i =$ actual cost of i-th op.

 $\hat{c} =$ amortized cost of i-th op.

 We require $\sum_{i=1}^{n} \hat{c}_i > \sum_{i=1}^{n} c_i$, for sequence of n ops.

- Total credit stored = $\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i > 0$, any time.
Example: (Analysis of) Implementing a queue using two stacks.

- Analysis is based on Observation 2 we made earlier.
- Actual cost of `ENQUEUE` = $1.
- Actual cost of `DEQUEUE` = \(\begin{cases} $1 & \text{if } S_2 \text{ is not empty} \\ $(1 + 2 \times S_1 \cdot \text{size}(S_2)) & \text{otherwise} \end{cases} \)

- Pay \$3 more during `ENQUEUE` to defray:
 - \$1 to `POP` from \(S_1 \)
 - \$1 to `PUSH` to \(S_2 \)
 - \$1 to finally `POP` from \(S_2 \).

- \$4 total.

- Paying \$4, when an element is enqueued is sufficient. Make sure that we are paying enough to defray the cost of `DEQUEUE` operation.

 i.e., the amortized cost of `ENQUEUE` is \$4, and that of `DEQUEUE` is \$0.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual Cost</th>
<th>Amortized Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ENQUEUE</code></td>
<td>1</td>
<td>4 ($3)</td>
</tr>
<tr>
<td><code>DEQUEUE</code></td>
<td>1 if (S_2) is not empty</td>
<td>0 $1</td>
</tr>
<tr>
<td><code>DEQUEUE</code></td>
<td>1 + 2 \times S_1 \cdot \text{size}(S_2) \text{ if } S_2 \text{ is empty}</td>
<td>0 $1</td>
</tr>
</tbody>
</table>

- We can show that at any time credit never goes negative!

 i.e. \(\sum_{i=1}^{n} C_i \geq \frac{n}{2} \sum_{i=1}^{n} C_i \).
The Potential Method: aka The Physicist’s Method

Idea:

• Define a potential function ϕ for the entire data structure.

 • Initialize it to 0, i.e. $\phi_{init} = 0$.

 • Always maintain $\phi > 0$.

 • Then, the amortized cost of an operation is its actual cost plus the change in potential.

 That is, $\hat{C}_i = C_i + \phi_i - \phi_{i-1}$.

• Potential function $\phi : D \rightarrow R$.

 \[
 \hat{C}_i = C_i + \phi_i - \phi_{i-1} = C_i + \Delta \phi_i
 \]

 Change in potential due to ith op.

 Note $\phi_i = \phi(D_i)$, and $\phi_{i-1} = \phi(D_{i-1})$.

• Total amortized cost $= \sum_{i=1}^{n} \hat{C}_i = \sum_{i=1}^{n} (C_i + \phi_i - \phi_{i-1}) = \phi_n - \phi_0 + \sum_{i=1}^{n} C_i$.

• We require $\phi_i > \phi_0, \forall i > 0$.

 So we can conveniently set $\phi_0 = 0$.

• Note: To show an upper bound, we must show

 amortized cost of a sequence of ops \geq actual cost.

Accounting Method vs. Potential Method: (AM vs. PM)

- Credit/potential is stored in the entire data structure
 in PM, as opposed to individual elements/parts of it in AM.
- PM is most widely used and flexible method.
Example: Implementing a queue using two stacks.

- Accounting method gives a fair idea of setting up the potential function, which is defined as follows:
 \[\phi_i = 3k + m. \]
 where \(\phi_i \) is potential after \(i \)th op

 \[h = S_1. \text{size}(c), \]
 \[m = S_2. \text{size}(c). \]

- Setting \(\phi_0 = 0 \), it is not difficult to check that \(\phi_i \geq \phi_0 = 0. \)

- Amortized cost of ENQUEUE:
 \[\hat{c}_i = c_i + (\phi_i - \phi_{i-1}) = 1 + [3(k+1) + m] - (3k+m) = 4. \]

- Amortized cost of DEQUEUE:
 - when \(S_2 \) is not empty: \(\hat{c}_i = c_i + (\phi_i - \phi_{i-1}) = 1 + (3k+m-1) - (3k+m) = 0 \)
 - when \(S_2 \) is empty: \(\hat{c}_i = c_i + (\phi_i - \phi_{i-1}) = 1 + 2k + (0+k) + (3k-0) \)
 actual cost \(\Rightarrow 1. \)

Note: For any sequence of \(n \) operations

\[\sum_{i=1}^{n} \hat{c}_i = \phi_n - \phi_0 + \sum_{i=1}^{n} c_i \geq \sum_{i=1}^{n} c_i \geq 0. \]

Conclusion: Amortized costs of ENQUEUE and DEQUEUE operations are constant i.e. \(O(1) \). Upper bound only, remember!

Exercise: Pick \(\phi_i = 2 \times S_i. \text{size}(c) \). Will that also work?