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The Markov Assumption

The definition of a state:
- Sufficient statistic of past history,
» For predicting s’and r
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That is what the state means.

Very strong assumption: the agent has access to state.



Markov and Robots

Does the robot see everything it needs
to be able to predict the effects of its
own actions!
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Generally

Limited perception:
* Only get a single view of the world at a time
* Does not contain everything you need
+ Comes from noisy sensors

Might be aliasing

Important questions:
- How do we think about state!?
* What do we really need!?
- How can we estimate it!
- How can we plan without direct access to it?



POMDPs

Partially observable Markov decision processes:
* Formalism for the non-Markov case
* Decision making under state uncertainty
- State uncertainty is unavoidable in real life
* The central theoretical objects for robotics




POMDPs

General idea:
- There is an MDP.
- Agent does not observe state directly
* Instead, observations!
- Observations probabilistically generated from state.
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POMDPs

More formally,a POMDP is:

S, a set of states

A, a set of actions \ MDP
T, transition function “ B

R, reward function

7 , discount factor /

(), set of observations
O, observation function O(w;|s;)



POMDPs

O(s) r

s changes




Robots

A robot is a device that induces a POMDP.
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POMDPs

So:

* Environment is in state s;

- Agent takes action a;

 Environment transitions to state S;+

- Agent observes only o+ = O(st+1) and reward r.

So how to pick actions?
- Might need to take information seeking actions.

Objective is still to produce a policy, but now it cannot be a
mapping from states to actions, because we do not have the
state.



Policies Based on Histories

One approach is to write a policy as function of the agent’s
history:
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This is a little problematic because this is a function of an
input that is of variable (and unboundedly growing) size.

Common approach: kth order Markov:
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... this is like assuming that the last k observations are
sufficient to specify the state (short term memory).



Belief State

Another approach:

- Estimate state using observations

- Belief state: distribution over states, b(s)

- Update based on observations

- Distribution represents state uncertainty
Take action based on distribution

b(St) — P(St‘otaot—ha’t—l) ...,00,&0)

Must implement a Bayes filter.



Belief State Updates

We can update b(s) at each time step using Bayes’ Rule.
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Example

%
observations: states:
walls each side!? position

(assume perfect sensing)



We start off not knowing where the robot is.
uniform distribution over positions



Example

first sensor reading: |

New distribution.



Example

Robot moves right
(pre-observation distribution)



Example

second sensor reading: D
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Post-observation distribution.




So

We can represent a belief about the world:
- Distribution over states
 Reflects best estimate given observations
- Formulation so far requires:
- Knowledge of form of states
- Knowledge of observation function
- Knowledge of transition function

... even given these, solving POMDPs is hard.



Final Thought

—

=)

—

bg

What do you do!




