Decision Making for Robots and Autonomous Systems

Fall 2015

George Konidaris gdk@cs.duke.edu

The Markov Assumption

The definition of a state:

- Sufficient statistic of past history,
- For predicting s' and r

$$T(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, ..., s_0) = T(s_{t+1}|s_t, a_t)$$

 $R(s_{t+1}, s_t, a_t, s_{t-1}, a_{t-1}, ..., s_0) = R(s_{t+1}, s_t, a_t)$

That is what the state means.

Very strong assumption: the agent has access to state.

Markov and Robots

Does the robot see everything it needs to be able to predict the effects of its own actions?

Generally

Limited perception:

- Only get a single view of the world at a time
- Does not contain everything you need
- Comes from noisy sensors
- Might be aliasing

Important questions:

- How do we think about state?
- What do we really need?
- How can we estimate it?
- How can we plan without direct access to it?

Partially observable Markov decision processes:

- Formalism for the non-Markov case
- Decision making under state uncertainty
- State uncertainty is unavoidable in real life
- The central theoretical objects for robotics

General idea:

- There is an MDP.
- Agent does not observe state directly
- Instead, observations!
- · Observations probabilistically generated from state.

More formally, a POMDP is:

S, a set of states

A, a set of actions

T, transition function

R, reward function

 γ , discount factor

 Ω , set of observations

O, observation function $O(\omega_t|s_t)$

Robots

A robot is a device that induces a POMDP.

So:

- Environment is in state s_t
- Agent takes action a_t
- Environment transitions to state s_{t+1}
- Agent observes only $o_{t+1} = O(s_{t+1})$ and reward r.

So how to pick actions?

Might need to take information seeking actions.

Objective is still to produce a **policy**, but now it cannot be a mapping from states to actions, because we do not have the state.

Policies Based on Histories

One approach is to write a policy as function of the agent's history:

•
$$\pi(a_t|o_t,o_{t-1},a_{t-1},...,o_0,a_0)$$

This is a little problematic because this is a function of an input that is of variable (and unboundedly growing) size.

Common approach: kth order Markov:

•
$$\pi(a_t|o_t, o_{t-1}, a_{t-1}, ..., o_{t-k}, a_{t-k})$$

... this is like assuming that the last k observations are sufficient to specify the state (short term memory).

Belief State

Another approach:

- Estimate state using observations
- Belief state: distribution over states, b(s)
- Update based on observations
- Distribution represents state uncertainty
- Take action based on distribution

$$b(s_t) = P(s_t | o_t, o_{t-1}, a_{t-1}, ..., o_0, a_0)$$

Must implement a Bayes filter.

Belief State Updates

We can update b(s) at each time step using Bayes' Rule.

observations:
walls each side?
(assume perfect sensing)

states: position

We start off not knowing where the robot is. uniform distribution over positions

first sensor reading:

New distribution.

Robot moves right (pre-observation distribution)

second sensor reading:

Post-observation distribution.

So

We can represent a belief about the world:

- Distribution over states
- Reflects best estimate given observations
- Formulation so far requires:
 - Knowledge of form of states
 - Knowledge of observation function
 - Knowledge of transition function

... even given these, solving POMDPs is hard.

Final Thought

What do you do?