Parallel Data Processing†

Introduction to Databases
CompSci 316 Fall 2017

†Most contents are drawn and adapted from slides by Madga Balazinska at U. Washington
Announcements (Thu., Dec. 5)

- **Homework #4** sample solution to be posted
- **Final exam** Sat. Dec. 16 2-5pm
 - **This room**
 - Open-book, open-notes
 - Comprehensive, but with strong emphasis on the second half of the course
 - Sample final + solution posted on Sakai
- **Project demos** starting
 - Check your email for schedule
 - Submit report/code before demo
 - Today: *LegiToken*, by Josh, Alex, Austin, Oscar, Stuart, and Trenton
Parallel processing

• Improve performance by executing multiple operations in parallel

• Cheaper to scale than relying on a single increasingly more powerful processor

• Performance metrics
 • **Speedup**, in terms of completion time
 • **Scaleup**, in terms of time per unit problem size
 • **Cost**: completion time \times \# processors \times (cost per processor per unit time)
Speedup

- Increase # processors → how much faster can we solve the same problem?
 - Overall problem size is fixed
Scaleup

• Increase # processors and problem size proportionally \rightarrow can we solve bigger problems in the same time?
 • Per-processor problem size is fixed
Cost

- Fix problem size

- Increase problem size proportionally with # processors
Why linear speedup/scaleup is hard

- Startup
 - Overhead of starting useful work on many processors
- Communication
 - Cost of exchanging data/information among processors
- Interference
 - Contention for resources among processors
- Skew
 - Slowest processor becomes the bottleneck
Shared-nothing architecture

- Most scalable (vs. shared-memory and shared-disk)
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program
Parallel query evaluation opportunities

- **Inter-query parallelism**
 - Each query can run on a different processor

- **Inter-operator parallelism**
 - A query runs on multiple processors
 - Each operator can run on a different processor

- **Intra-operator parallelism**
 - An operator can run on multiple processors, each working on a different “split” of data/operation
A brief tour of two systems

• **Parallel DBMS** (e.g., Teradata)
 - Provides the same abstractions (e.g., relational data model, SQL, transactions) as a regular DBMS
 - Parallelization handled behind the scene

• **MapReduce** (e.g., Hadoop)
 - Supports easy scaling out (e.g., adding lots of commodity servers) and failure handling
 - Does not require loading data into tables
 - Exposes parallelism to programmers
 - Other tools built on top of MapReduce can provide higher-level abstractions
Horizontal data partitioning

• Split a table R into p chunks, each stored at one of the p processors

• Splitting strategies:
 • **Round robin** assigns the i-th row assigned to chunk $(i \mod p)$
 • **Hash-based partitioning on attribute A** assigns row r to chunk $(h(r.A) \mod p)$
 • **Range-based partitioning on attribute A** partitioning the range of $R.A$ values into p ranges, and assigns row r to the chunk whose corresponding range contains $r.A$
Teradata: an example parallel DBMS

- Hash-based partitioning of Customer on cid

Each Customer is assigned to an AMP

AMP = unit of parallelism in Teradata
Example query in Teradata

- Find all orders today, along with the customer info

```sql
SELECT *
FROM Order o, Customer c
WHERE o.cid = c.cid
AND o.date = today();
```

![Query Execution Plan]

- **Join:**
 - **Condition:** o.cid = c.cid

- **Scan:**
 - **Source:** Customer c

- **Filter:**
 - **Condition:** o.date = today()
Teradata example: scan-filter-hash

Consistent with partitioning of Customer; each Order row is routed to the AMP storing the Customer row with the same cid.
Teradata example: hash join

Each AMP processes Order and Customer rows with the same cid hash.
MapReduce: motivation

• Many problems can be processed in this pattern:
 • Given a lot of unsorted data
 • Map: extract something of interest from each record
 • Shuffle: group the intermediate results in some way
 • Reduce: further process (e.g., aggregate, summarize, analyze, transform) each group and write final results
 (Customize map and reduce for problem at hand)

☞ Make this pattern easy to program and efficient to run

 • Original Google paper in OSDI 2004
 • Hadoop has been the most popular open-source implementation
M/R programming model

• Input/output: each a collection of key/value pairs

• Programmer specifies two functions
 • map(k_1, v_1) \rightarrow list(k_2, v_2)
 • Processes each input key/value pair, and produces a list of intermediate key/value pairs
 • reduce($k_2, \text{list}(v_2)$) \rightarrow list(v_3)
 • Processes all intermediate values associated with the same key, and produces a list of result values (usually just one for the key)
M/R execution

Reduce tasks:

Shuffle:

Map tasks:

Data not necessary local

Distributed file system (e.g., HDFS)

Intermediate results go to local disk

Final results go to distributed file system

Each map task gets an input "split"
M/R example: word count

• Expected input: a huge file (or collection of many files) with millions of lines of English text
• Expected output: list of (word, count) pairs
• Implementation
 • map(_, line) → list(word, count)
 • Given a line, split it into words, and output \((w, 1)\) for each word \(w\) in the line
 • reduce(word, list(count)) → (word, count)
 • Given a word \(w\) and list \(L\) of counts associated with it, compute
 \[s = \sum_{count \in L} \text{count} \]
 and output \((w, s)\)
 • Optimization: before shuffling, map can pre-aggregate word counts locally so there is less data to be shuffled
 • This optimization can be implemented in Hadoop as a “combiner”
Some implementation details

• There is one “master” node
• Input file gets divided into m “splits,” each a contiguous piece of the file
• Master assigns m map tasks (one per split) to “workers” and tracks their progress
• Map output is partitioned into r “regions”
• Master assigns r reduce tasks (one per region) to workers and tracks their progress
• Reduce workers read regions from the map workers’ local disks
M/R execution timeline

- When there are more tasks than workers, tasks execute in “waves”
 - Boundaries between waves are usually blurred
- Reduce tasks can’t start until all map tasks are done
More implementation details

• Numbers of map and reduce tasks
 • Larger is better for load balancing
 • But more tasks add overhead and communication

• Worker failure
 • Master pings workers periodically
 • If one is down, reassign its split/region to another worker

• “Straggler”: a machine that is exceptionally slow
 • Pre-emptively run the last few remaining tasks redundantly as backup
M/R example: Hadoop TeraSort

• Expected input: a collection of (key, payload) pairs
• Expected output: sorted (key, payload) pairs
• Implementation
 • Using a small sample of input, find \(r - 1 \) key values that divides the key range into \(r \) subranges where # pairs is roughly equal across them
 • \(\text{map}(k, \text{payload}) \rightarrow (j, \langle k, \text{payload} \rangle) \)
 • If \(k \) falls within the \(j \)-th subrange
 • \(\text{reduce}(j, \text{list}(<k, \text{payload}>)) \rightarrow \text{list}(k, \text{payload}) \)
 • Sort the list of \((k, \text{payload}) \) pairs by \(k \) and output
Parallel DBMS vs. MapReduce

Parallel DBMS
- Schema + intelligent indexing/partitioning
- Can stream data from one operator to the next
- SQL + automatic optimization

MapReduce
- No schema, no indexing
- Higher scalability and elasticity
 - Just throw new machines in!
- Better handling of failures and stragglers
- Black-box map/reduce functions \rightarrow hand optimization

But newer systems (e.g., Hive, Spark SQL) have added schema, declarative languages, indexing, and automatic optimization