Announcements (Thu. Aug. 30)

• Sign up for Piazza, NOW!
• Homework #1 to be posted today; due in 2½ weeks
 • Sign up for Gradiance
 • Gradescope not ready yet; please wait for my announcement
• Set up VM
 • Instructions on course website
 • Google Cloud coupon email sent
 • Check Sakai email archive for any missed announcements
 • Help sessions planned for next week
• My office hours are cancelled today—talk to me right after class if there’s something urgent
• TA/UTA office hours to be posted soon
Edgar F. Codd (1923-2003)

- Pilot in the Royal Air Force in WW2
- Inventor of the relational model and algebra while at IBM
- Turing Award, 1981

Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
 • Set-valued attributes are not allowed
• Each relation contains a set of tuples (or rows)
 • Each tuple has a value for each attribute of the relation
 • Duplicate tuples are not allowed
 • Two tuples are duplicates if they agree on all attributes

☞ Simplicity is a virtue!
Example

User

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though output is always in some order)

Group

<table>
<thead>
<tr>
<th>gid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Book Club</td>
</tr>
<tr>
<td>gov</td>
<td>Student Government</td>
</tr>
<tr>
<td>dps</td>
<td>Dead Putting Society</td>
</tr>
</tbody>
</table>

Member

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Schema vs. instance

• **Schema (metadata)**
 - Specifies the logical structure of data
 - Is defined at setup time
 - Rarely changes

• **Instance**
 - Represents the data content
 - Changes rapidly, but always conforms to the schema

Compare to types vs. collections of objects of these types in a programming language
Example

• Schema
 • User (uid int, name string, age int, pop float)
 • Group (gid string, name string)
 • Member (uid int, gid string)

• Instance
 • User: \{〈142, Bart, 10, 0.9〉, 〈857, Milhouse, 10, 0.2〉, ...\}
 • Group: \{〈abc, Book Club〉, 〈gov, Student Government〉, ...\}
 • Member: \{〈142, dps〉, 〈123, gov〉, ...\}
Relational algebra

A language for querying relational data based on “operators”

- **Core operators:**
 - Selection, projection, cross product, union, difference, and renaming

- **Additional, derived operators:**
 - Join, natural join, intersection, etc.

- Compose operators to make complex queries
Selection

• Input: a table R

• Notation: $\sigma_p R$
 • p is called a selection condition (or predicate)

• Purpose: filter rows according to some criteria

• Output: same columns as R, but only rows or R that satisfy p
Selection example

- Users with popularity higher than 0.5

\[\sigma_{pop > 0.5} User \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
More on selection

• Selection condition can include any column of R, constants, comparison ($=$, \leq, etc.) and Boolean connectives (\land: and, \lor: or, \neg: not)
 • Example: users with popularity at least 0.9 and age under 10 or above 12
 \[
 \sigma_{\text{pop} \geq 0.9 \land (\text{age} < 10 \lor \text{age} > 12)} \text{ User}
 \]
• You must be able to evaluate the condition over each single row of the input table!
 • Example: the most popular user
 \[
 \sigma_{\text{pop} \geq \text{every pop in User}} \text{ User}
 \]
Projection

• Input: a table R
• Notation: $\pi_L R$
 • L is a list of columns in R
• Purpose: output chosen columns
• Output: same rows, but only the columns in L
Projection example

• IDs and names of all users

\[\pi_{uid, name} User \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

...
More on projection

• Duplicate output rows are removed (by definition)
 • Example: user ages

$$\pi_{age} User$$

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$$\pi_{age}$$

<table>
<thead>
<tr>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

...
Cross product

• Input: two tables R and S
• Natation: $R \times S$
• Purpose: pairs rows from two tables
• Output: for each row r in R and each s in S, output a row rs (concatenation of r and s)
Cross product example

User \(\times \) Member

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
A note a column ordering

• Ordering of columns is unimportant as far as contents are concerned

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

• So cross product is **commutative**, i.e., for any R and S, $R \times S = S \times R$ (up to the ordering of columns)
Derived operator: join

(A.k.a. “theta-join”)

• Input: two tables R and S

• Notation: $R \bowtie_p S$
 • p is called a join condition (or predicate)

• Purpose: relate rows from two tables according to some criteria

• Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p

• Shorthand for $\sigma_p (R \times S)$
Join example

- Info about users, plus IDs of their groups

\[\text{User} \bowtie_{\text{User.uid} = \text{Member.uid}} \text{ Member} \]

Prefix a column reference with table name and “." to disambiguate identically named columns from different tables.
Derived operator: natural join

• Input: two tables R and S

• Notation: $R \bowtie S$

• Purpose: relate rows from two tables, and
 • Enforce equality between identically named columns
 • Eliminate one copy of identically named columns

• Shorthand for $\pi_L (R \bowtie_p S)$, where
 • p equates each pair of columns common to R and S
 • L is the union of column names from R and S (with duplicate columns removed)
Natural join example

\[\text{User} \bowtie \text{Member} = \pi_? (\text{User} \bowtie ? \text{Member}) \]
\[= \pi_{\text{uid}, \text{name}, \text{age}, \text{pop}, \text{gid}} (\text{User} \bowtie \text{User.uid} = \text{Member.uid}) \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Union

• Input: two tables R and S
• Notation: $R \cup S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows in R and all rows in S (with duplicate rows removed)
Difference

• Input: two tables R and S
• Notation: $R - S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows in R that are not in S
Derived operator: intersection

• Input: two tables R and S

• Notation: $R \cap S$
 • R and S must have identical schema

• Output:
 • Has the same schema as R and S
 • Contains all rows that are in both R and S

• Shorthand for

• Also equivalent

• And to
Renaming

• Input: a table R

• Notation: $\rho_S R$, $\rho_{(A_1,A_2,...)} R$, or $\rho_S(A_1,A_2,...) R$

• Purpose: “rename” a table and/or its columns

• Output: a table with the same rows as R, but called differently

• Used to
 • Avoid confusion caused by identical column names
 • Create identical column names for natural joins

• As with all other relational operators, it doesn’t modify the database
 • Think of the renamed table as a copy of the original
Renaming example

• IDs of users who belong to at least two groups

\[\text{Member} \bowtie_? \text{Member} \]

\[
\pi_{uid} \left(\text{Member} \bowtie_{\text{Member.uid}=\text{Member.uid} \land \text{Member.gid}=\text{Member.gid}} \right)
\]

Wrong!

\[
\pi_{uid_1} \left(\rho_{(uid_1,gid_1)} \text{Member} \bowtie_{uid_1=uid_2 \land gid_1 \neq gid_2} \rho_{(uid_2,gid_2)} \text{Member} \right)
\]
Expression tree notation

\[
\pi_{\text{uid}_1} \bowtie \text{uid}_1 = \text{uid}_2 \land \text{gid}_1 \neq \text{gid}_2
\]

\[
\rho(\text{uid}_1, \text{gid}_1) \quad \text{Member} \quad \rho(\text{uid}_2, \text{gid}_2) \quad \text{Member}
\]
Summary of core operators

- Selection: $\sigma_p R$
- Projection: $\pi_L R$
- Cross product: $R \times S$
- Union: $R \cup S$
- Difference: $R - S$
- Renaming: $\rho_S(A_1, A_2, \ldots) R$
 - Does not really add “processing” power
Summary of derived operators

• Join: $R \bowtie_p S$
• Natural join: $R \bowtie S$
• Intersection: $R \cap S$

• Many more
 • Semijoin, anti-semijoin, quotient, ...
An exercise

• Names of users in Lisa’s groups

Writing a query bottom-up: Their names

Who’s Lisa?

Lisa’s groups

Users in Lisa’s groups

$\sigma_{name="Lisa"}$

User

π_{gid}

Member
Another exercise

• IDs of groups that Lisa doesn’t belong to

Writing a query top-down:

```
π_{gid} Group
```

```
π_{gid} Member σ_{name="Lisa"} User
```

```
⋈
```

All group IDs

IDs of Lisa’s groups
A trickier exercise

• Who are the most popular?

A deeper question:
When (and why) is “—” needed?
Monotone operators

• If some old output rows may need to be removed
 • Then the operator is non-monotone
• Otherwise the operator is monotone
 • That is, old output rows always remain “correct” when more rows are added to the input

• Formally, for a monotone operator op:
 $R \subseteq R'$ implies $op(R) \subseteq op(R')$ for any R, R'
Classification of relational operators

• Selection: $\sigma_p R$
• Projection: $\pi_L R$
• Cross product: $R \times S$
• Join: $R \bowtie_p S$
• Natural join: $R \bowtie S$
• Union: $R \cup S$
• Difference: $R - S$
• Intersection: $R \cap S$
Why is “—” needed for “highest”?

• Composition of monotone operators produces a *monotone query*
 • Old output rows remain “correct” when more rows are added to the input

• Is the “highest” query monotone?
Why do we need core operator X?

- Difference
- Projection
- Cross product
- Union
- Selection?
Extensions to relational algebra

• Duplicate handling ("bag algebra")
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow new column values to be computed

⏏ All these will come up when we talk about SQL
_encoded_image

⏏ But for now we will stick to standard relational algebra without these extensions
Why is r.a. a good query language?

• Simple
 • A small set of core operators
 • Semantics are easy to grasp

• Declarative?
 • Yes, compared with older languages like CODASYL
 • Though operators do look somewhat “procedural”

• Complete?
 • With respect to what?
Relational calculus

- \{u.uid | u \in User \land
 \neg(\exists u' \in User: u.pop < u'.pop)\}, or
- \{u.uid | u \in User \land
 (\forall u' \in User: u.pop \geq u'.pop)\}

- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa

- Example of an “unsafe” relational calculus query
 - \{u.name | \neg(u \in User)\}
 - Cannot evaluate it just by looking at the database
Turing machine

• A conceptual device that can execute any computer algorithm
• Approximates what general-purpose programming languages can do
 • E.g., Python, Java, C++, ...

So how does relational algebra compare with a Turing machine?

Limits of relational algebra

• Relational algebra has **no recursion**
 • Example: given relation $\text{Friend}(uid_1, uid_2)$, who can Bart reach in his social network with any number of hops?
 • Writing this query in r.a. is impossible!
 • So r.a. is not as powerful as general-purpose languages

• But why not?
 • Optimization becomes **undecidable**
 • Simplicity is empowering
 • Besides, you can always implement it at the application level, and recursion is added to SQL nevertheless!