Relational Database Design Theory

Introduction to Databases
CompSci 316 Fall 2018
Announcements (Tue. Sep. 11)

• Homework #1 due next Tuesday (11:59pm)
• Gradiance autograder to be deployed by tonight
 • Uses a (hidden) test db different from the sample
• An experimental RA debugger available for a subset of the problems
 • https://ratest.cs.duke.edu/
 • You are not required to use it, but the bonus is that
 • It uses the same (hidden) test db as the autograder
 • If your query is wrong, it will “explain” how with a very simple example db (with tuples drawn from the hidden test db)

• Course project description posted
 • Read it!
 • “Mixer” in a week and a half
 • Milestone #1 right after fall break
 • Teamwork required: 5 people per team on average
Motivation

• Why is `UserGroup (uid, uname, gid)` a bad design?
 • It has redundancy—user name is recorded multiple times, once for each group that a user belongs to
 • Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>

Must be b

Could be anything
FD examples

Address (street_address, city, state, zip)
• street_address, city, state → zip
• zip → city, state
• zip, state → zip?

• zip → state, zip?
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”

- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

• Does another FD follow from \mathcal{F}?
 • Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

• Is K a key of R?
 • What are all the keys of R?
Attribute closure

• Given \(R \), a set of FD’s \(\mathcal{F} \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):

 The **closure of \(Z \)** (denoted \(Z^+ \)) with respect to \(\mathcal{F} \) is the set of all attributes \(\{A_1, A_2, \ldots\} \) functionally determined by \(Z \) (that is, \(Z \rightarrow A_1A_2 \ldots \))

• Algorithm for computing the closure

 • Start with closure = \(Z \)

 • If \(X \rightarrow Y \) is in \(\mathcal{F} \) and \(X \) is already in the closure, then also add \(Y \) to the closure

 • Repeat until no new attributes can be added
A more complex example

UserJoinsGroup \((uid, uname, twitterid, gid, fromDate)\)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

- \(uid \rightarrow uname, twitterid\)
- \(twitterid \rightarrow uid\)
- \(uid, gid \rightarrow fromDate\)

Not a good design, and we will see why shortly
Example of computing closure

- \{gid, twitterid\}^+ = ?

- twitterid → uid
 - Add uid
 - Closure grows to \{gid, twitterid, uid\}

- uid → uname, twitterid
 - Add uname, twitterid
 - Closure grows to \{gid, twitterid, uid, uname\}

- uid, gid → fromDate
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup

\[F \text{ includes:} \]
- uid → uname, twitterid
- twitterid → uid
- uid, gid → fromDate
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

- Is K a key of R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)
Rules of FD’s

• Armstrong’s axioms
 • Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 • Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 • Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• Rules derived from axioms
 • Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 • Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• $uid \rightarrow uname, twitterid$

(... plus other FD’s)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Decomposition

- Eliminates redundancy
- To get back to the original relation:

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)
<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

...
Lossless join decomposition

• Decompose relation R into relations S and T
 • $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 • $S = \pi_{\text{attrs}(S)}(R)$
 • $T = \pi_{\text{attrs}(T)}(R)$

• The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

• Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 • A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

No way to tell which is the original relation
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in Boyce-Codd Normal Form if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key \rightarrow other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)

Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

• Repeat until all relations are in BCNF
BCNF decomposition example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid)

uid → uname, twitterid
twitterid → uid

BCNF

Member (uid, gid, fromDate)

uid, gid → fromDate

BCNF
Another example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

UserId (twitterid, uid)

BCNF

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname

twitterid → uname

twitterid, gid → fromDate

UserName (twitterid, uname)

Member (twitterid, gid, fromDate)

BCNF

BCNF

uid → uname, twitterid

twitterid → uid

uid, gid → fromDate
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

• Anything we project always comes back in the join:
 $$R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$
 • Sure; and it doesn’t depend on the FD

• Anything that comes back in the join must be in the original relation:
 $$R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$$
 • Proof will make use of the fact that $X \rightarrow Y$
Recap

• Functional dependencies: a generalization of the key concept
• Non-key functional dependencies: a source of redundancy
• BCNF decomposition: a method for removing redundancies
 • BNCF decomposition is a lossless join decomposition
• BCNF: schema in this normal form has no redundancy due to FD’s
BCNF = no redundancy?

• User \((uid, gid, place)\)
 • A user can belong to multiple groups
 • A user can register places she’s visited
 • Groups and places have nothing to do with other
 • FD’s?

• BCNF?

• Redundancies?
 • Tons!

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Morocco</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multivalued dependencies

• A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

• $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R
MVD examples

User (uid, gid, place)

• uid → gid

• uid → place
 • Intuition: given uid, gid and place are “independent”

• uid, gid → place
 • Trivial: LHS ∪ RHS = all attributes of R

• uid, gid → uid
 • Trivial: LHS ⊇ RHS
Complete MVD + FD rules

• FD reflexivity, augmentation, and transitivity
• MVD complementation:
 If $X \rightarrow Y$, then $X \rightarrow \text{attrs}(R) - X - Y$
• MVD augmentation:
 If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
• MVD transitivity:
 If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
• Replication (FD is MVD):
 If $X \rightarrow Y$, then $X \rightarrow Y$
 Try proving things using these!?
• Coalescence:
 If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

• Given a set of FD’s and MVD’s \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure
 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Need:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>
| a | b_1 | c_2 | d_1 | ✅
| a | b_2 | c_1 | d_2 | ✅

<table>
<thead>
<tr>
<th>$A \rightarrow B$</th>
<th>a</th>
<th>b_2</th>
<th>c_1</th>
<th>d_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_2</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>
Another proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

Have: $A \rightarrow B$ \quad $b_1 = b_2$

B \rightarrow C \quad c_1 = c_2

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities
Counterexample by chase

• In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b₁</td>
<td>c₁</td>
<td>d₁</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b₂</td>
<td>c₂</td>
<td>d₂</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b₂</td>
<td>c₂</td>
<td>d₁</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b₁</td>
<td>c₁</td>
<td>d₂</td>
<td></td>
</tr>
</tbody>
</table>

Have:

Need: $b₁ = b₂$ ❌

Counterexample!
4NF

• A relation R is in **Fourth Normal Form (4NF)** if
 • For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 • That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

• 4NF is stronger than BCNF
 • Because every FD is also a MVD
4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey

• Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 • \(R_1 \) has attributes \(X \cup Y \)
 • \(R_2 \) has attributes \(X \cup Z \) (where \(Z \) contains \(R \) attributes not in \(X \) or \(Y \))

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm

• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User (uid, gid, place)
4NF violation: uid \rightarrow gid

Member (uid, gid)
4NF

Visited (uid, place)
4NF

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Morocco</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Summary

• Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic