SQL: Recursion

Introduction to Databases
CompSci 316 Fall 2018
Announcements (Tue., Oct. 2)

• Homework 2 Problems 1-4 and X1 due tonight
• Homework 2 Problems 5 & 6 due tomorrow night
• Homework 2 Problem 7 due after break
• Extra office hours for midterm preparation
 • UTA Wed. (Oct. 3) 6-7:45pm
 • Jun Thu. (Oct. 4) 9-10am
• Midterm in class Thursday
 • Open-book, open-notes
 • Same format as sample midterm

• A last-minute, informal mixer Thu. (Oct. 4) 8-10pm in LSRC D243 for those still looking for members/teams
• Project Milestone #1 due next Thursday
A motivating example

Example: find Bart’s ancestors

“Ancestor” has a recursive definition

• X is Y’s ancestor if
 • X is Y’s parent, or
 • X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

• SQL2 had no recursion
 • You can find Bart’s parents, grandparents, great grandparents, etc.

    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 • But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
 • `WITH` clause
 • Implemented in PostgreSQL (`common table expressions`)
Ancestor query in SQL3

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
Fixed point of a function

• If $f: D \to D$ is a function from a type D to itself, a **fixed point** of f is a value x such that $f(x) = x$

• Example: What is the fixed point of $f(x) = x/2$?
 • 0, because $f(0) = 0/2 = 0$

• To compute a fixed point of f
 • Start with a “seed”: $x \leftarrow x_0$
 • Compute $f(x)$
 • If $f(x) = x$, stop; x is fixed point of f
 • Otherwise, $x \leftarrow f(x)$; repeat

• Example: compute the fixed point of $f(x) = x/2$
 • With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... → 0

Doesn’t always work, but happens to work for us!
Fixed point of a query

• A query q is just a function that maps an input table to an output table, so a **fixed point** of q is a table T such that $q(T) = T$

• To compute fixed point of q
 • Start with an empty table: $T \leftarrow \emptyset$
 • Evaluate q over T
 • If the result is identical to T, stop; T is a fixed point
 • Otherwise, let T be the new result; repeat

Starting from \emptyset produces the **unique minimal fixed point** (assuming q is monotone)
Finding ancestors

- WITH RECURSIVE Ancestor(anc, desc) AS
 (SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1,
 Ancestor a2
 WHERE a1.desc = a2.anc)
- Think of the definition as Ancestor = q(Ancestor)
Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships.
- In the first step, we deduce that parents and children form ancestor-descendent relationships.
- In each subsequent step, we use the facts deduced in previous steps to get more ancestor-descendent relationships.
- We stop when no new facts can be proven.
Linear recursion

• With linear recursion, a recursive definition can make only one reference to itself

• Non-linear
 • WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT al.anc, a2.desc
 FROM Ancestor al, Ancestor a2
 WHERE al.desc = a2.anc))

• Linear
 • WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT anc, child
 FROM Ancestor, Parent
 WHERE desc = parent))
Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent
 - For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows

- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., $a \rightarrow d$ has two different derivations
Mutual recursion example

• Table *Natural* \((n)\) contains 1, 2, …, 100

• Which numbers are even/odd?
 • An odd number plus 1 is an even number
 • An even number plus 1 is an odd number
 • 1 is an odd number

WITH RECURSIVE *Even*(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM *Odd*)),

RECURSIVE *Odd*(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM *Even*))))
Semantics of WITH

• WITH RECURSIVE R_1 AS Q_1, …, RECURSIVE R_n AS Q_n

• Q;
 • Q and Q_1, …, Q_n may refer to R_1, …, R_n

• Semantics

 1. $R_1 \leftarrow \emptyset$, …, $R_n \leftarrow \emptyset$
 2. Evaluate Q_1, …, Q_n using the current contents of R_1, …, R_n:
 $R_1^{new} \leftarrow Q_1$, …, $R_n^{new} \leftarrow Q_n$
 3. If $R_i^{new} \neq R_i$ for some i
 3.1. $R_1 \leftarrow R_1^{new}$, …, $R_n \leftarrow R_n^{new}$
 3.2. Go to 2.
 4. Compute Q using the current contents of R_1, …, R_n and output the result
Computing mutual recursion

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),

RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

• Even = ∅, Odd = ∅
• Even = ∅, Odd = {1}
• Even = {2}, Odd = {1}
• Even = {2}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3, 5}
• ...

...
Fixed points are not unique

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2
WHERE al.desc = a2.anc))

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Abe</td>
<td>Abe</td>
</tr>
<tr>
<td>Abe</td>
<td>Bart</td>
</tr>
<tr>
<td>Abe</td>
<td>Lisa</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
<tr>
<td>Ape</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Bart</td>
</tr>
<tr>
<td>Ape</td>
<td>Lisa</td>
</tr>
<tr>
<td>Bogus</td>
<td>Bogus</td>
</tr>
</tbody>
</table>

Note how the bogus tuple reinforces itself!

- But if \(q \) is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \(\emptyset \)
 - Thus the unique **minimal** fixed point is the “natural” answer
Mixing negation with recursion

• If q is non-monotone
 • The fixed-point iteration may flip-flop and never converge
 • There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!

• Example: popular users ($\text{pop} \geq 0.8$) join either Jessica’s Circle or Tommy’s
 • Those not in Jessica’s Circle should be in Tom’s
 • Those not in Tom’s Circle should be in Jessica’s

• \text{WITH RECURSIVE} \ \text{TommyCircle}(\text{uid}) \ \text{AS}
 (SELECT \text{uid} FROM User WHERE \text{pop} \geq 0.8
 \text{AND} \text{uid} \text{NOT IN} (SELECT \text{uid} FROM JessicaCircle)),
 \text{RECURSIVE} \ \text{JessicaCircle}(\text{uid}) \ \text{AS}
 (SELECT \text{uid} FROM User WHERE \text{pop} \geq 0.8
 \text{AND} \text{uid} \text{NOT IN} (SELECT \text{uid} FROM TommyCircle))
Fixed-point iter may not converge

WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Multiple minimal fixed points

WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Legal mix of negation and recursion

• Construct a dependency graph
 • One node for each table defined in WITH
 • A directed edge $R \rightarrow S$ if R is defined in terms of S
 • Label the directed edge “—” if the query defining R is not monotone with respect to S

• Legal SQL3 recursion: no cycle with a “—” edge
 • Called stratified negation

• Bad mix: a cycle with at least one edge labeled “—”

Legal SQL3 recursion example:

- Ancestor
 - TommyCircle
 - JessicaCircle
 - Illegal!
Stratified negation example

• Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),

Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;
Evaluating stratified negation

• The stratum of a node R is the maximum number of “—” edges on any path from R in the dependency graph
 • Ancestor: stratum 0
 • Person: stratum 0
 • NoCommonAnc: stratum 1

• Evaluation strategy
 • Compute tables lowest-stratum first
 • For each stratum, use fixed-point iteration on all nodes in that stratum
 • Stratum 0: Ancestor and Person
 • Stratum 1: NoCommonAnc

☞ Intuitively, there is no negation within each stratum
Summary

• SQL3 WITH recursive queries
• Solution to a recursive query (with no negation): unique minimal fixed point
• Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
• Mixing negation and recursion is tricky
 • Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 • Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)