Query Optimization

Introduction to Databases
CompSci 316 Fall 2018
Announcements (Tue., Nov. 20)

• **Homework #4** due next in 2½ weeks
• No class this Thu. (Thanksgiving break)
 • No weekly progress update due this Thu. either

• **Yameng** is running this lecture
 • While I am out of town giving two talks on computational fact-checking
Query optimization

• One logical plan → “best” physical plan

• Questions
 • How to enumerate possible plans
 • How to estimate costs
 • How to pick the “best” one

• Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences

Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)
More relational algebra equivalences

- Convert $\sigma_p \times$ to/from \bowtie_p: $\sigma_p (R \times S) = R \bowtie_p S$
- Merge/split σ’s: $\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \land p_2} R$
- Merge/split π’s: $\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1} R$, where $L_1 \subseteq L_2$
- Push down/pull up σ:
 $\sigma_{p \land p_r \land p_s} (R \bowtie_p S) = (\sigma_{p_r} R) \bowtie_{p \land p'} (\sigma_{p_s} S)$, where
 - p_r is a predicate involving only R columns
 - p_s is a predicate involving only S columns
 - p and p' are predicates involving both R and S columns
- Push down π: $\pi_L (\sigma_p R) = \pi_L \left(\sigma_p (\pi_{L'} R) \right)$, where
 - L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones
Relational query rewrite example

\[
\pi_{\text{Group.name}} \\
\sigma_{\text{User.name}=\text{“Bart”} \land \text{User.uid} = \text{Member.uid} \land \text{Member.gid} = \text{Group.gid}} \\
\times \\
\text{Group} \times \\
\text{User} \times \text{Member}
\]

Push down \(\sigma\)

\[
\sigma_{\text{User.uid} = \text{Member.uid}} \\
\times \\
\text{Member} \times \\
\text{User}
\]

\(\sigma_{\text{name} = \text{“Bart”}}\)

\[
\pi_{\text{Group.name}} \\
\sigma_{\text{Member.gid} = \text{Group.gid}} \\
\times \\
\text{Group} \times \\
\text{Member}
\]

Convert \(\sigma_{p} \times\) to \(\bowtie_{p}\)

\[
\pi_{\text{Group.name}} \\
\bowtie_{p} \\
\text{Member.gid} = \text{Group.gid} \\
\times \\
\text{Group} \times \\
\text{Member}
\]

\[
\sigma_{\text{name} = \text{“Bart”}} \\
\times \\
\text{User}
\]
Heuristics-based query optimization

• Start with a logical plan

• Push selections/projections down as much as possible
 • Why?
 • Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
 • Why?
 • Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)
SQL query rewrite

• More complicated—subqueries and views divide a query into nested “blocks”
 • Processing each block separately forces particular join methods and join order
 • Even if the plan is optimal for each block, it may not be optimal for the entire query

• Unnest query: convert subqueries/views to joins

 ➞ We can just deal with select-project-join queries
 • Where the clean rules of relational algebra apply
SQL query rewrite example

• SELECT name
 FROM User
 WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
 FROM User, Member
 WHERE User.uid = Member.uid;
 • Wrong—consider two Bart’s, each joining two groups

• SELECT name
 FROM (SELECT DISTINCT User.uid, name
 FROM User, Member
 WHERE User.uid = Member.uid);
 • Right—assuming User.uid is a key
Dealing with correlated subqueries

• SELECT gid FROM Group
 WHERE name LIKE 'Springfield%'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

• SELECT gid
 FROM Group, (SELECT gid, COUNT(*) AS cnt
 FROM Member GROUP BY gid) t
 WHERE t.gid = Group.gid AND min_size > t.cnt
 AND name LIKE 'Springfield%';
“Magic” decorrelation

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);

- WITH Supp_Group AS (SELECT * FROM Group WHERE name LIKE 'Springfield%'),
 Magic AS (SELECT DISTINCT gid FROM Supp_Group),
 DS AS ((SELECT Group.gid, COUNT(*) AS cnt
 FROM Magic, Member WHERE Magic.gid = Member.gid
 GROUP BY Member.gid) UNION
 (SELECT gid, 0 AS cnt
 FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

Process the outer query without the subquery
Collect bindings
Evaluate the subquery with bindings
Finally, refine the outer query
Heuristics- vs. cost-based optimization

• Heuristics-based optimization
 • Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
 • Rewrite logical plan to combine “blocks” as much as possible
 • Optimize query block by block
 • Enumerate logical plans (already covered)
 • Estimate the cost of plans
 • Pick a plan with acceptable cost
 • Focus: select-project-join blocks
Cost estimation

Physical plan example:

- We have: cost estimation for each operator
 - Example: $\text{SORT}(gid)$ takes $O(B(\text{input}) \times \log_M B(\text{input}))$
 - But what is $B(\text{input})$?

- We need: size of intermediate results
Cardinality estimation
Selections with equality predicates

• $Q: \sigma_{A=v} R$

• Suppose the following information is available
 • Size of R: $|R|$
 • Number of distinct A values in R: $|\pi_A R|$

• Assumptions
 • Values of A are uniformly distributed in R
 • Values of v in Q are uniformly distributed over all $R. A$ values

• $|Q| \approx \frac{|R|}{|\pi_A R|}$
 • Selectivity factor of $(A = v)$ is $\frac{1}{|\pi_A R|}$
Conjunctive predicates

• \(Q: \sigma_{A=u} \land B=v \) \(R \)

• Additional assumptions
 • \((A = u) \) and \((B = v) \) are independent
 • Counterexample: major and advisor
 • No “over”-selection
 • Counterexample: \(A \) is the key

• \(|Q| \approx \frac{|R|}{|\pi_A R| \cdot |\pi_B R|} \)
 • Reduce total size by all selectivity factors
Negated and disjunctive predicates

• $Q: \sigma_{A \neq v} R$
 • $|Q| \approx |R| \cdot \left(1 - \frac{1}{|\pi_{AR}|}\right)$
 • Selectivity factor of $\neg p$ is $(1 - \text{selectivity factor of } p)$

• $Q: \sigma_{A=u} \lor B=v R$
 • $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_{AR}|} + \frac{1}{|\pi_{BR}|}\right)$?
 • No! Tuples satisfying $(A = u)$ and $(B = v)$ are counted twice
 • $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_{AR}|} + \frac{1}{|\pi_{BR}|} - \frac{1}{|\pi_{AR}||\pi_{BR}|}\right)$
 • Inclusion-exclusion principle
Range predicates

• \(Q: \sigma_{A>v} R \)

• Not enough information!
 • Just pick, say, \(|Q| \approx |R| \cdot \frac{1}{3} \)

• With more information
 • Largest R.A value: \(\text{high}(R.A) \)
 • Smallest R.A value: \(\text{low}(R.A) \)
 • \(|Q| \approx |R| \cdot \frac{\text{high}(R.A) - v}{\text{high}(R.A) - \text{low}(R.A)} \)
 • In practice: sometimes the second highest and lowest are used instead
Two-way equi-join

• $Q: R(A, B) \bowtie S(A, C)$

• Assumption: containment of value sets
 • Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 • That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 • Certainly not true in general
 • But holds in the common case of foreign key joins

• $|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)}$
 • Selectivity factor of $R. A = S. A$ is $\frac{1}{\max(|\pi_A R|, |\pi_A S|)}$
Multiway equi-join

• $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$

• What is the number of distinct C values in the join of R and S?

• Assumption: preservation of value sets
 • A non-join attribute does not lose values from its set of possible values
 • That is, if A is in R but not S, then $\pi_A(R \bowtie S) = \pi_A R$
 • Certainly not true in general
 • But holds in the common case of foreign key joins (for value sets from the referencing table)
Multiway equi-join (cont’d)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: \frac{1}{\max(|\pi_B R|, |\pi_B S|)} \)
 - \(S.C = T.C: \frac{1}{\max(|\pi_C S|, |\pi_C T|)} \)
 - \(|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)}\)
Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
    ```sql
    SELECT * FROM User WHERE pop > 0.9;
    SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
    ```
- Not covered: better estimation using histograms
Search strategy

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAAAKE/mi8ejfZ8S7U/s1600/cornMaze.jpg
Search space

• Huge!
• “Bushy” plan example:

\[
\begin{array}{c}
R_2 \\
R_1 \\
R_3 \\
R_4 \\
R_5
\end{array}
\]

• Just considering different join orders, there are \(\frac{(2n-2)!}{(n-1)!}\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 • 30240 for \(n = 6\)
• And there are more if we consider:
 • Multiway joins
 • Different join methods
 • Placement of selection and projection operators
Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_p(R_i)$
- Start with the pair S_i, S_j with the smallest estimated size for $S_i \bowtie S_j$
- Repeat until no relation is left:
 Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size
A dynamic programming approach

• Generate optimal plans **bottom-up**
 • Pass 1: Find the best single-table plans (for each table)
 • Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 • ...
 • Pass \(k \): Find the best \(k \)-table plans (for each combination of \(k \) tables) by combining two smaller best plans found in previous passes
 • ...

• Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)

☞ Well, not quite...
The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!
Dealing with interesting orders

When picking the best plan

- Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \), and
 - Interesting orders produced by \(X \) “subsume” those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order
Summary

• Relational algebra equivalence
• SQL rewrite tricks
• Heuristics-based optimization
• Cost-based optimization
 • Need statistics to estimate sizes of intermediate results
 • Greedy approach
 • Dynamic programming approach