Parallel Data Processing†

Introduction to Databases
CompSci 316 Fall 2018

†Some contents are drawn and adapted from slides by Madga Balazinska at U. Washington
Announcements (Tue., Nov. 27)

• **Project demos**—sign-up instructions to be emailed tonight
 • In-class demo slots available next Thursday

• **Homework #4** due next Tuesday
 • Depending on our progress in lectures, I might give an extension on Problems 5 and X2
Parallel processing

• Improve performance by executing multiple operations in parallel

• Cheaper to scale than relying on a single increasingly more powerful processor

• Performance metrics
 • Speedup, in terms of completion time
 • Scaleup, in terms of time per unit problem size
 • Cost: completion time × # processors × (cost per processor per unit time)
Speedup

• Increase # processors → how much faster can we solve the same problem?
 • Overall problem size is fixed
Scaleup

• Increase # processors and problem size proportionally → can we solve bigger problems in the same time?
 • Per-processor problem size is fixed
Cost

• Fix problem size

• Increase problem size proportionally with # processors
Why linear speedup/scaleup is hard

• Startup
 • Overhead of starting useful work on many processors

• Communication
 • Cost of exchanging data/information among processors

• Interference
 • Contention for resources among processors

• Skew
 • Slowest processor becomes the bottleneck
Shared-nothing architecture

- Most scalable (vs. shared-memory and shared-disk)
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program
Parallel query evaluation opportunities

• **Inter-query** parallelism
 • Each query can run on a different processor

• **Inter-operator** parallelism
 • A query runs on multiple processors
 • Each operator can run on a different processor

• **Intra-operator** parallelism
 • An operator can run on multiple processors, each working on a different “split” of data/operation

☞ Focus of this lecture
A brief tour of three approaches

• “DB”: parallel DBMS, e.g., Teradata
 • Same abstractions (relational data model, SQL, transactions) as a regular DBMS
 • Parallelization handled behind the scene

• “BD (Big Data)” 10 years go: MapReduce, e.g., Hadoop
 • Easy scaling out (e.g., adding lots of commodity servers) and failure handling
 • Input/output in files, not tables
 • Parallelism exposed to programmers

• “BD” today: Spark
 • Compared to MapReduce: smarter memory usage, recovery, and optimization
 • Higher-level DB-like abstractions (but still no updates)
Parallel DBMS

E.g.: TERADATA
Horizontal data partitioning

• Split a table R into p chunks, each stored at one of the p processors

• Splitting strategies:
 • **Round robin** assigns the i-th row assigned to chunk $(i \mod p)$
 • **Hash-based partitioning on attribute A** assigns row r to chunk $(h(r, A) \mod p)$
 • **Range-based partitioning on attribute A** partitioning the range of $R.A$ values into p ranges, and assigns row r to the chunk whose corresponding range contains $r.A$
Teradata: an example parallel DBMS

- Hash-based partitioning of Customer on cid

A Customer row is inserted

Each Customer is assigned to an AMP

AMP = unit of parallelism in Teradata
Example query in Teradata

• Find all orders today, along with the customer info

```sql
SELECT *
FROM Order o, Customer c
WHERE o.cid = c.cid
AND o.date = today();
```

![Query Diagram]

- **Join**: `o.cid = c.cid`
- **Scan**: Customer c
- **Filter**: `o.date = today()`
Teradata example: scan-filter-hash

Consistent with partitioning of Customer; each Order row is routed to the AMP storing the Customer row with the same cid.
Teradata example: hash join

Each AMP processes Order and Customer rows with the same cid hash.
MapReduce: motivation

- Many problems can be processed in this pattern:
 - Given a lot of unsorted data
 - Map: extract something of interest from each record
 - Shuffle: group the intermediate results in some way
 - Reduce: further process (e.g., aggregate, summarize, analyze, transform) each group and write final results
 (Customize map and reduce for problem at hand)

- Make this pattern easy to program and efficient to run
 - Original Google paper in OSDI 2004
 - Hadoop has been the most popular open-source implementation
 - Spark still supports it
M/R programming model

• Input/output: each a collection of key/value pairs

• Programmer specifies two functions
 • \(\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2)\)
 • Processes each input key/value pair, and produces a list of intermediate key/value pairs
 • \(\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_3)\)
 • Processes all intermediate values associated with the same key, and produces a list of result values (usually just one for the key)
M/R execution

Distributed file system

Reduce tasks:

Shuffle:

Map tasks:

Data not necessary local

Distributed file system (e.g., HDFS)

Final results go to distributed file system

Intermediate results go to local disk

Each map task gets an input “split”
M/R example: word count

• Expected input: a huge file (or collection of many files) with millions of lines of English text
• Expected output: list of (word, count) pairs
• Implementation
 • map(_, line) → list(word, count)
 • Given a line, split it into words, and output \((w, 1)\) for each word \(w\) in the line
 • reduce(word, list(count)) → (word, count)
 • Given a word \(w\) and list \(L\) of counts associated with it, compute
 \(s = \sum_{\text{count} \in L} \text{count}\) and output \((w, s)\)
• Optimization: before shuffling, map can pre-aggregate word counts locally so there is less data to be shuffled
 • This optimization can be implemented in Hadoop as a “combiner”
Some implementation details

• There is one “master” node

• Input file gets divided into m “splits,” each a contiguous piece of the file

• Master assigns m map tasks (one per split) to “workers” and tracks their progress

• Map output is partitioned into r “regions”

• Master assigns r reduce tasks (one per region) to workers and tracks their progress

• Reduce workers read regions from the map workers’ local disks
• When there are more tasks than workers, tasks execute in “waves”
 • Boundaries between waves are usually blurred
• Reduce tasks can’t start until all map tasks are done
More implementation details

• Numbers of map and reduce tasks
 • Larger is better for load balancing
 • But more tasks add overhead and communication

• Worker failure
 • Master pings workers periodically
 • If one is down, reassign its split/region to another worker

• “Straggler”: a machine that is exceptionally slow
 • Pre-emptively run the last few remaining tasks redundantly as backup
M/R example: Hadoop TeraSort

• Expected input: a collection of (key, payload) pairs
• Expected output: sorted (key, payload) pairs
• Implementation
 • Using a small sample of input, find $r - 1$ key values that divides the key range into r subranges where # pairs is roughly equal across them
 • map(k, payload) → (j, <k, payload$>$)
 • If k falls within the j-th subrange
 • reduce(j, list(<k, payload$>)) → list($k$, payload$)$
 • Sort the list of (k, payload) pairs by k and output
Parallel DBMS vs. MapReduce

• **Parallel DBMS**
 • Schema + intelligent indexing/partitioning
 • Can stream data from one operator to the next
 • SQL + automatic optimization

• **MapReduce**
 • No schema, no indexing
 • Higher scalability and elasticity
 • Just throw new machines in!
 • Better handling of failures and stragglers
 • Black-box map/reduce functions \rightarrow hand optimization
We will focus on the Python dialect, although Spark supports multiple languages.
Addressing inefficiencies in Hadoop

• Hadoop: no automatic optimization
☞ Spark
 • Allow program to be a DAG of DB-like operators, with less reliance on black-box code
 • Delay evaluation as much as possible
 • Fuse operators into stages and compile each stage

• Hadoop: too many I/Os
 • E.g., output of each M/R job is always written to disk
 • But such checkpointing simplifies failure recovery
☞ Spark
 • Keep intermediate results in memory
 • Instead of checkpointing, use “lineage” for recovery
RDDs

- Spark stores all intermediate results as **Resilient Distributed Datasets (RDDs)**
 - Immutable, memory-resident, and distributed across multiple nodes
- Spark also tracks the “lineage” of RDDs, i.e., what expressions computed them
 - Can be done at the partition level

What happens to a RDD if a node crashes?

- The partition of this RDD on this node will be lost
- But with lineage, the master simply recomputes the a lost partition when needed
 - Requires recursive recomputation if input RDD partitions are also missing
Example: votes & explanations

• Raw data reside in lots of JSON files obtained from ProPublica API

• Each vote: URI (id), question, description, date, time, result

• Each explanation: member id, name, state, party, vote URI, date, text, category
 - E.g., “P000523”, “David E. Price”, “NC”, “D”, “https://api.propublica.org/congress/v1/115/house/sessions/2/votes/269.json”, “2018-06-20”, “Mr. Speaker, due to adverse weather and numerous flight delays and cancellations in North Carolina, I was unable to vote yesterday during Roll Call 269, the motion... ”, “Travel difficulties”
Basic M/R with Spark RDD

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri', 'date', 'text', 'category')

Map function: map($k_1,v_1) \rightarrow list(k_2,v_2)$
def rdd_count_by_category_map(record):
 if len(record) == len(explain_fields):
 return [(record[explain_fields.index('category')], 1)]
 else:
 return []

Reduce function: reduce($k_2,list(v_2)) \rightarrow list(v_3)$
def rdd_count_by_category_reduce(record):
 key, vals = record
 return [(key, len(vals))]
Basic M/R with Spark RDD

setting up one RDD that contains all the input:
rdd = sc. ...

count number of explanations by category; order by
number (descending) and then category (ascending):
result = rdd
 .flatMap(rdd_count_by_category_map)\n .groupByKey()\n .flatMap(rdd_count_by_category_reduce)\n .sortBy(lambda x: (-x[1], x[0]))

for row in result.collect():
 print('|'.join(str(field) for field in row))

Be lazy: build up a DAG of “transformations,” but no evaluation yet!

Optimize & evaluate the whole DAG only when needed, e.g., triggered by “actions” like collect()

Be careful: Spark RDDs support map() and reduce() too, but they are not the same as those in MapReduce
Moving “BD” to “DB”

Each element in a RDD is an opaque object—hard to program

• Why don’t we make each element a “row” with named columns—easier to refer to in processing
 • RDD becomes a DataFrame (name from the R language)
 • Still immutable, memory-resident, and distributed

• Then why don’t we have database-like operators instead of just MapReduce?
 • Knowing their semantics allows more optimization

• Spark in fact pushed the idea further
 • Spark Dataset = DataFrame with type-checking
 • And just run SQL over Datasets using SparkSQL!
Spark DataFrame

from pyspark.sql import functions as F
explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri', 'date', 'text', 'category')

setting up a DataFrame of explanations:
df_explain = sc. ...

count number of explanations by category; order by
number (descending) and then category (ascending):
df_explain.groupBy('category')
 .agg(F.count('name'))
 .withColumnRenamed('count(name)', 'count')
 .sort([('count', 'category')], ascending=[0, 1])
 .show(10000, truncate=False)
Another Spark DataFrame Example

from pyspark.sql import functions as F
vote_fields = ('vote_uri', 'question', 'description', 'date', 'time', 'result')
explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri', 'date', 'text', 'category')

setting up DataFrames for each type of data:
df_votes = sc. ...
df_explain = sc. ...

what does the following do?
df_votes.join(df_explain.select('vote_api_uri', 'name'),
 df_votes.vote_uri == df_explain.vote_api_uri, 'left_outer')
 .groupBy('vote_uri', 'date', 'time', 'question', 'description', 'result')
 .agg(F.count('name'), F.collect_list('name'))
 .withColumnRenamed('count(name)', 'count')
 .withColumnRenamed('collect_list(name)', 'names')
 .sort(['count', 'date', 'time'], ascending=[0, 0, 0])
 .select('vote_uri', 'date', 'time', 'question', 'description', 'result', 'count', 'names')
 .show(20, truncate=False)

For each vote, find out which legislators provided explanations; order by the number of such legislators (descending), then date and time (descending)
Summary

• “DB”: parallel DBMS
 • Standard relational operators
 • Automatic optimization
 • Transactions

• “BD” 10 years go: MapReduce
 • User-defined map and reduce functions
 • Mostly manual optimization
 • No updates/transactions

• “BD” today: Spark
 • Still supporting user-defined functions, but more standard relational operators than older “BD” systems
 • More automatic optimization than older “BD” systems
 • No updates/transactions