Transaction Processing

Introduction to Databases

CompSci 316 Fall 2018
Announcements (Thu., Nov. 29)

• Homework #4 due next Tuesday
• Project demos—sign-up instructions emailed
 • Early in-class demos a week from now
 • Weekly progress update due today on Piazza
• Final exam Sat. Dec. 15 7-10pm
 • Open-book, open-notes
 • Comprehensive, but with strong emphasis on the second half of the course
 • Sample final already posted
Announcements (Tue., Dec. 4)

• Most of **Homework #4** due tonight
 • Problems 5 (Gradiance) and X2 (Spark) due Thursday

• **Project demos**—schedule is finalized
 • Nobody signed up for early in-class demo 😞
 • Last weekly progress update due Thu. on Piazza

• **Final exam** Sat. Dec. 15 7-10pm
 • Open-book, open-notes
 • Comprehensive, but with strong emphasis on the second half of the course
 • Sample final already posted
Review

• ACID
 • Atomicity: TX’s are either completely done or not done at all
 • Consistency: TX’s should leave the database in a consistent state
 • Isolation: TX’s must behave as if they are executed in isolation
 • Durability: Effects of committed TX’s are resilient against failures

• SQL transactions
 -- Begins implicitly
 SELECT ...;
 UPDATE ...;
 ROLLBACK | COMMIT;
Concurrency control

• Goal: ensure the “I” (isolation) in ACID

\[
\begin{align*}
T_1: & \quad T_2: \\
\text{read}(A); & \quad \text{read}(A); \\
\text{write}(A); & \quad \text{write}(A); \\
\text{read}(B); & \quad \text{read}(C); \\
\text{write}(B); & \quad \text{write}(C); \\
\text{commit;} & \quad \text{commit;}
\end{align*}
\]
Good versus bad schedules

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th></th>
<th>T_1</th>
<th>T_2</th>
<th></th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good!</td>
<td></td>
<td></td>
<td>Bad!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_1</td>
<td>r(A)</td>
<td>w(A)</td>
<td>T_1</td>
<td>r(A)</td>
<td>w(A)</td>
<td>T_1</td>
<td>r(A)</td>
<td>w(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>w(A)</td>
<td>Write 400</td>
<td></td>
<td></td>
<td>Write 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>w(B)</td>
<td></td>
<td>w(A)</td>
<td>r(B)</td>
<td></td>
<td>r(B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 – 100</td>
<td></td>
<td></td>
<td>400 – 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r(A)</td>
<td>w(A)</td>
<td></td>
<td>r(C)</td>
<td>w(B)</td>
<td></td>
<td>r(B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>w(B)</td>
</tr>
<tr>
<td></td>
<td>r(C)</td>
<td>w(C)</td>
<td></td>
<td></td>
<td>w(C)</td>
<td></td>
<td>r(C)</td>
<td>w(C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Serial schedule

• Execute transactions in order, with **no interleaving** of operations
 • $T_1.r(A), T_1.w(A), T_1.r(B), T_1.w(B), T_2.r(A), T_2.w(A),$
 $T_2.r(C), T_2.w(C)$
 • $T_2.r(A), T_2.w(A), T_2.r(C), T_2.w(C), T_1.r(A), T_1.w(A),$
 $T_1.r(B), T_1.w(B)$
 ☛ Isolation achieved by definition!

• Problem: **no concurrency** at all

• Question: how to reorder operations to allow more concurrency
Conflicting operations

- Two operations on the same data item conflict if at least one of the operations is a write
 - \(r(X) \) and \(w(X) \) conflict
 - \(w(X) \) and \(r(X) \) conflict
 - \(w(X) \) and \(w(X) \) conflict
 - \(r(X) \) and \(r(X) \) do not conflict
 - \(r/w(X) \) and \(r/w(Y) \) do not conflict

- Order of conflicting operations matters
 - E.g., if \(T_1.r(A) \) precedes \(T_2.w(A) \), then conceptually, \(T_1 \) should precede \(T_2 \)
Precedence graph

• A **node** for each transaction
• A **directed edge** from T_i to T_j if an operation of T_i precedes and conflicts with an operation of T_j in the schedule

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(A)$</td>
<td>w(A)</td>
<td></td>
</tr>
<tr>
<td>$r(B)$</td>
<td></td>
<td>w(A)</td>
</tr>
<tr>
<td>$w(B)$</td>
<td>r(C)</td>
<td></td>
</tr>
<tr>
<td>$w(B)$</td>
<td></td>
<td>w(C)</td>
</tr>
</tbody>
</table>

Good: no cycle
Conflict-serializable schedule

• A schedule is conflict-serializable iff its precedence graph has no cycles

• A conflict-serializable schedule is equivalent to some serial schedule (and therefore is “good”)
 • In that serial schedule, transactions are executed in the topological order of the precedence graph
 • You can get to that serial schedule by repeatedly swapping adjacent, non-conflicting operations from different transactions
Locking

• Rules
 • If a transaction wants to read an object, it must first request a shared lock (S mode) on that object
 • If a transaction wants to modify an object, it must first request an exclusive lock (X mode) on that object
 • Allow one exclusive lock, or multiple shared locks

Compatibility matrix

<table>
<thead>
<tr>
<th>Mode of lock(s) currently held by other transactions</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Mode of the lock requested

Grant the lock?
Basic locking is not enough

Add 1 to both A and B (preserve $A=B$)

Read 100
Write 100+1
unlock(A)

Possible schedule under locking

But still not conflict-serializable!

lock-X(A)
lock-X(B)
unlock(A)
unlock(B)

Multiply both A and B by 2 (preserves $A=B$)

Write 101*2
Write 100*2

$A \neq B$!
Two-phase locking (2PL)

• All lock requests precede all unlock requests
 • Phase 1: obtain locks, phase 2: release locks

2PL guarantees a conflict-serializable schedule

Cannot obtain the lock on B until T_1 unlocks
Remaining problems of 2PL

<table>
<thead>
<tr>
<th></th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r(A)</td>
<td>r(A)</td>
</tr>
<tr>
<td></td>
<td>w(A)</td>
<td>w(A)</td>
</tr>
<tr>
<td></td>
<td>r(B)</td>
<td>r(B)</td>
</tr>
<tr>
<td></td>
<td>w(B)</td>
<td>w(B)</td>
</tr>
<tr>
<td></td>
<td>Abort!</td>
<td></td>
</tr>
</tbody>
</table>

- T_2 has read uncommitted data written by T_1
- If T_1 aborts, then T_2 must abort as well
- **Cascading aborts** possible if other transactions have read data written by T_2

- Even worse, what if T_2 commits before T_1?
 - Schedule is **not recoverable** if the system crashes right after T_2 commits
Strict 2PL

• Only release locks at commit/abort time
 • A writer will block all other readers until the writer commits or aborts

• Used in many commercial DBMS
 • Oracle is a notable exception
Recovery

• Goal: ensure “A” (atomicity) and “D” (durability)
Execution model

To read/write X

• The disk block containing X must be first brought into memory
• X is read/written in memory
• The memory block containing X, if modified, must be written back (flushed) to disk eventually
Failures

• System crashes in the middle of a transaction T; partial effects of T were written to disk
 • How do we undo T (atomicity)?

• System crashes right after a transaction T commits; not all effects of T were written to disk
 • How do we complete T (durability)?
Naïve approach

• **Force:** When a transaction commits, all writes of this transaction must be reflected on disk
 • Without force, if system crashes right after T commits, effects of T will be lost

☞ Problem:

• **No steal:** Writes of a transaction can only be flushed to disk at commit time
 • With steal, if system crashes before T commits but after some writes of T have been flushed to disk, there is no way to undo these writes

☞ Problem:
Logging

• **Log**
 - Sequence of log records, recording all changes made to the database
 - Written to stable storage (e.g., disk) during normal operation
 - Used in recovery

• Hey, one change turns into two—bad for performance?
 - But writes are sequential (append to the end of log)
 - Can use dedicated disk(s) to improve performance
Undo/redo logging rules

• When a transaction T_i starts, log $\langle T_i, \text{start} \rangle$
• Record values before and after each modification: $\langle T_i, X, \text{old_value_of_X, new_value_of_X} \rangle$
 • T_i is transaction id and X identifies the data item
• A transaction T_i is committed when its commit log record $\langle T_i, \text{commit} \rangle$ is written to disk
• Write-ahead logging (WAL): Before X is modified on disk, the log record pertaining to X must be flushed
 • Without WAL, system might crash after X is modified on disk but before its log record is written to disk—no way to undo
• No force: A transaction can commit even if its modified memory blocks have not be written to disk (since redo information is logged)
• Steal: Modified memory blocks can be flushed to disk anytime (since undo information is logged)
Undo/redo logging example

T_1 (balance transfer of 100 from A to B)

read(A, a); $a = a - 100$;
write(A, a);
read(B, b); $b = b + 100$;
write(B, b);
commit;

Memory buffer

A = 800 700
B = 400 500

Disk

A = 800 700
B = 400 500

Log

$\langle T_1, \text{start} \rangle$
$\langle T_1, A, 800, 700 \rangle$
$\langle T_1, B, 400, 500 \rangle$
$\langle T_1, \text{commit} \rangle$

Steal: can flush before commit
No force: can flush after commit
No restriction (except WAL) on when memory blocks can/should be flushed
Checkpointing

• Where does recovery start?

Naïve approach:

• To checkpoint:
 • Stop accepting new transactions (*lame*)
 • Finish all active transactions
 • Take a database dump

• To recover:
 • Start from last checkpoint
Fuzzy checkpointing

• Determine S, the set of (ids of) currently active transactions, and log $\langle \text{begin-checkpoint } S \rangle$
• Flush all blocks (dirty at the time of the checkpoint) at your leisure
• Log $\langle \text{end-checkpoint } \text{begin-checkpoint}_\text{location} \rangle$
• Between begin and end, continue processing old and new transactions
Recovery: analysis and redo phase

• Need to determine U, the set of active transactions at time of crash

• Scan log backward to find the last end-checkpoint record and follow the pointer to find the corresponding \langle start-checkpoint $S \rangle$

• Initially, let U be S

• Scan forward from that start-checkpoint to end of the log
 • For a log record $\langle T, \text{start} \rangle$, add T to U
 • For a log record $\langle T, \text{commit} \mid \text{abort} \rangle$, remove T from U
 • For a log record $\langle T, X, \text{old}, \text{new} \rangle$, issue write($X$, new)
 ❁ Basically repeats history!
Recovery: undo phase

• Scan log **backward**
 • Undo the effects of transactions in U
 • That is, for each log record $\langle T, X, old, new \rangle$ where T is in U, issue $\text{write}(X, old)$, and log this operation too (part of the “repeating-history” paradigm)
 • Log $\langle T, abort \rangle$ when all effects of T have been undone

สำคัญ
• Each log record stores a pointer to the previous log record for the same transaction; follow the pointer chain during undo
Summary

• Concurrency control
 • Serial schedule: no interleaving
 • Conflict-serializable schedule: no cycles in the precedence graph; equivalent to a serial schedule
 • 2PL: guarantees a conflict-serializable schedule
 • Strict 2PL: also guarantees recoverability

• Recovery: undo/redo logging with fuzzy checkpointing
 • Normal operation: write-ahead logging, no force, steal
 • Recovery: first redo (forward), and then undo (backward)