CompSci 516
Data Intensive Computing Systems

Lecture 12
Query Optimization

Instructor: Sudeepa Roy
Announcements

• Reminder: HW2 due on Oct 31
 – if you have not started yet, now is the time!
 – guest lecture by Prajakta Kalmegh on Thursday – more on Spark and big data systems
• Work on your projects too
• Midterm viewing at the end of the class
 – Remember to give me the exam back (no exam, no grade)
 – Feel free to take photos
Reading Material

• [RG]
 – Query optimization: Chapter 15 (overview only)

• [GUW]
 – Chapter 16.2-16.7

• Original paper by Selinger et al.:
 – P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. *Access Path Selection in a Relational Database Management System*
 Proceedings of ACM SIGMOD, 1979. Pages 22-34
 – No need to understand the whole paper, but take a look at the example (link on the course webpage)

Acknowledgement:
• The following slides have been created adapting the instructor material of the [RG] book provided by the authors Dr. Ramakrishnan and Dr. Gehrke.
• Some of the following slides have been created by adapting slides by Profs. Shivnath Babu and Magda Balazinska
Query Blocks: Units of Optimization

- **Query Block**
 - No nesting
 - One SELECT, one FROM
 - At most one WHERE, GROUP BY, HAVING

- **SQL query**
- => parsed into a collection of query blocks
- => the blocks are optimized one block at a time

- Express single-block it as a relational algebra (RA) expression
Cost Estimation

• For each plan considered, must estimate cost:

• Must estimate cost of each operation in plan tree.
 – Depends on input cardinalities
 – We’ve discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)

• Must also estimate size of result for each operation in tree
 – gives input cardinality of next operators

• Also consider
 – whether the output is sorted
 – intermediate results written to disk
Relational Algebra Equivalences

• Allow us to choose different join orders and to `push’ selections and projections ahead of joins.

• **Selections:** \(\sigma_{c_1 \wedge ... \wedge c_n}(R) \equiv \sigma_{c_1}(\ldots \sigma_{c_n}(R)) \) (Cascade)
 \[\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R)) \] (Commute)

• **Projections:** \(\pi_{a_1}(R) \equiv \pi_{a_1}(\ldots(\pi_{a_n}(R))) \) (Cascade)

• **Joins:** \(R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T \) (Associative)
 \[(R \bowtie S) \equiv (S \bowtie R) \] (Commute)

There are many more intuitive equivalences, see 15.3.4 for details

Next lecture: cost-based optimization and Selinger’s algorithm
Notation

- \(T(R) \) : Number of tuples in R
- \(B(R) \) : Number of blocks (pages) in R
- \(V(R, A) \) : Number of distinct values of attribute A in R
Query Optimization Problem

Pick the best plan from the space of physical plans
Cost-based Query Optimization

Pick the plan with least cost

Challenge:

• Do not want to execute more than one plan

• Need to estimate the cost without executing the plan

“heuristic-based” optimizer (e.g. push selections down) have limited power and not used much
Cost-based Query Optimization

Pick the plan with least cost

Tasks:
1. Estimate the cost of individual operators
 done in Lecture 9-11
2. Estimate the size of output of individual operators
 today
3. Combine costs of different operators in a plan
 today
4. Efficiently search the space of plans today
Task 1 and 2
Estimating cost and size of different operators

- Size = #tuples, NOT #pages
- Cost = #page I/O
 - but, need to consider whether the intermediate relation fits in memory, is written back to/read from disk (or on-the-fly goes to the next operator), etc.
Desired Properties of Estimating Sizes of Intermediate Relations

Ideally,

• should give accurate estimates (as much as possible)
• should be easy to compute
• should be logically consistent
 – size estimate should be independent of how the relation is computed (e.g. which join algorithm/join order is used)

• But, no “universally agreed upon” ways to meet these goals
Cost of Table Scan

Table Scan

Cost: $B(R)$
Size: $T(R)$

$T(R)$: Number of tuples in R
$B(R)$: Number of blocks in R
Cost of Index Scan

Cost: \[B(R) \] – if clustered
\[T(R) \] – if unclustered

Size: \[T(R) \]

Note:
1. size is independent of the implementation of the scan/index
2. Index scan is bad if unclustered

\[T(R) : \text{Number of tuples in } R \]
\[B(R) : \text{Number of blocks in } R \]
Cost of Index Scan with Selection

Cost: \(B(R) \times f \) – if clustered
\(T(R) \times f \) – if unclustered

Size: \(T(R) \times f \)

\[X = \sigma_{R.A > 50} R \]

Reduction factor
\[f = \frac{(\text{Max}(R.A) - 50)}{(\text{Max}(R.A) - \text{Min}(R.A))} \]
assumes uniform distribution

\(T(R) \): Number of tuples in R
\(B(R) \): Number of blocks in R
Cost of Index Scan with Selection (and multiple conditions)

\[X = \sigma_{R.A > 50 \text{ and } R.B = C} R \]

Cost: \(B(R) \times f \) – if clustered

\[T(R) \times f \] – if unclustered

Size: \(T(R) \times f \)

What is \(f_1 \) if the first condition is \(100 > R.1 > 50 \)?

Reduction factors

\[f_1 = \frac{\text{Max}(R.A) - 50}{\text{Max}(R.A) - \text{Min}(R.A)} \]

\[f_2 = \frac{1}{V(R, B)} \]

\[f = f_1 \times f_2 \] (assumes independence and uniform distribution)

\[R \]

Index Scan

\[\text{X} \]

\[\sigma_{R.A > 50 \text{ and } R.B = C} R \]

\[\text{T}(R) \]: Number of tuples in \(R \)

\[\text{B}(R) \]: Number of blocks in \(R \)

\[V(R, A) \]: Number of distinct values of attribute \(A \) in \(R \)
Cost of Projection

\[X = \pi_A R \]

Cost: depends on the method of scanning \(R \)

- \(B(R) \) for table scan or clustered index scan

Size: \(T(R) \)

- But tuples are smaller
- If you have more information on the size of the smaller tuples, can estimate \#I/O better
Size of Join

Quite tricky

- If disjoint A and B values
 - then 0
- If A is key of R and B is foreign key of S
 - then $T(S)$
- If all tuples have the same value of $R.A = S.B = x$
 - then $T(R) \times T(S)$

$T(R)$: Number of tuples in R
$B(R)$: Number of blocks in R
$V(R, A)$: Number of distinct values of attribute A in R
Size of Join

Two standard assumptions

1. Containment of value sets:
 • if \(V(R, A) \leq V(S, B) \), then all \(A \)-values of \(R \) are included in \(B \)-values of \(S \)
 • e.g. satisfied when \(A \) is foreign key, \(B \) is key

2. Preservation of value sets:
 • For all “non-joining” attributes, the set of distinct values is preserved in join
 • \(V(R \bowtie S, C) = V(R, C) \), where \(C \neq A \) is an attribute in \(R \)
 • \(V(R \bowtie S, D) = V(S, D) \), where \(D \neq B \) is an attribute in \(S \)
 • Helps estimate distinct set size in \(R \bowtie S \bowtie T \)
Size of Join

Reduction factor
\[f = \frac{1}{\max(V(R, A), V(S, B))} \]

Size
\[\text{Size} = T(R) \times T(S) \times f \]

- \(T(R) \): Number of tuples in \(R \)
- \(B(R) \): Number of blocks in \(R \)
- \(V(R, A) \): Number of distinct values of attribute \(A \) in \(R \)
Size of Join

Reduction factor
\[f = \frac{1}{\max(V(R, A), V(S, B))} \]

Size = \(T(R) \times T(S) \times f \)

Why max?
- Suppose \(V(R, A) \leq V(S, B) \)
- The probability of a \(A \)-value joining with a \(B \)-value is \(\frac{1}{V(S,B)} = \) reduction factor
- Under the two assumptions stated earlier + uniformity

Assumes index on both \(A \) and \(B \)
- if one index: \(1/V(\ldots, \ldots) \)
- if no index: say 1/10

\(R.A = S.B \)

\(T(R) \): Number of tuples in \(R \)
\(B(R) \): Number of blocks in \(R \)
\(V(R, A) \): Number of distinct values of attribute \(A \) in \(R \)
Task 3: Combine cost of different operators in a plan

With Examples
“Given” the physical plan

• Size = #tuples, NOT #pages
• Cost = #page I/O
 • but, need to consider whether the intermediate relation fits in memory, is written back to disk (or on-the-fly goes to the next operator) etc.
Example Query

Student (sid, name, age, address)
Book(bid, title, author)
Checkout(sid, bid, date)

Query:
SELECT S.name
FROM Student S, Book B, Checkout C
WHERE S.sid = C.sid
AND B.bid = C.bid
AND B.author = 'Olden Fames'
AND S.age > 12
AND S.age < 20
Assumptions

• Student: S, Book: B, Checkout: C

• Sid, bid foreign key in C referencing S and B resp.
• There are 10,000 Student records stored on 1,000 pages.
• There are 50,000 Book records stored on 5,000 pages.
• There are 300,000 Checkout records stored on 15,000 pages.
• There are 500 different authors.
• Student ages range from 7 to 24.

Warning: a few dense slides next 😊
Physical Query Plan – 1

Assumptions (given):
- Data is not sorted on any attributes
- For both in (a) and (b), outer relations fit in memory

Physical Query Plan

Q. Compute
1. the cost and cardinality in steps (a) to (d)
2. the total cost

Tuple-based nested loop
- B inner

Page-oriented nested loop
- S outer, C inner

- Student S (File scan)
- Checkout C (File scan)
- Book B (File scan)

\(\pi_{\text{name}} \)

\(\sigma \text{ } 12 < \text{age} < 20 \land \text{author} = \text{‘Olden Fames’} \)

\((\text{On the fly}) \) \((b) \)

\((\text{On the fly}) \) \((d) \)

\(T(S) = 10,000 \)
\(T(B) = 50,000 \)
\(T(C) = 300,000 \)

\(B(S) = 1,000 \)
\(B(B) = 5,000 \)
\(B(C) = 15,000 \)

\(V(B, \text{author}) = 500 \)

\(7 \leq \text{age} \leq 24 \)
\(S(\text{sid}, \text{name}, \text{age}, \text{addr}) \) \(T(S) = 10,000 \)
\(B(\text{bid}, \text{title}, \text{author}) \) \(T(B) = 50,000 \)
\(C(\text{sid}, \text{bid}, \text{date}) \) \(T(C) = 300,000 \)

\(B(S) = 1,000 \)
\(B(B) = 5,000 \)
\(B(C) = 15,000 \)
\(V(B, \text{author}) = 500 \)

7 \(\leq \text{age} \leq 24 \)

\[\text{Cost} = B(S) + B(S) \times B(C) \]
\[= 1000 + 1000 \times 15000 \]
\[= 15,001,000 \]

\[\text{Cardinality} = T(C) = 300,000 \]
- foreign key join, output pipelined to next join
- Can apply the formula as well

\[T(S) \times T(C) / \max (V(S, \text{sid}), V(C, \text{sid})) \]
\[= T(C) \]
since \(V(S, \text{sid}) \geq V(C, \text{sid}) \) and
\[T(S) = V(S, \text{sid}) \]
S(sid, name, age, addr) T(S) = 10,000
B(bid, title, author) T(B) = 50,000
C(sid, bid, date) T(C) = 300,000

B(S) = 1,000
B(B) = 5,000
B(C) = 15,000
V(B, author) = 500

7 <= age <= 24

Cost =
T(S \bowtie C) * B(B)
= 300,000 * 5,000 = 15 * 10^8

Cardinality =
T(S \bowtie C) = 300,000

• foreign key join
• don’t need scanning for outer relation
• outer relation fits in memory
\(S(\text{sid}, \text{name}, \text{age}, \text{addr}) \quad T(S) = 10,000 \quad B(S) = 1,000 \quad V(B, \text{author}) = 500 \)

\(B(\text{bid}, \text{title}, \text{author}) \quad T(B) = 50,000 \quad B(B) = 5,000 \)

\(C(\text{sid}, \text{bid}, \text{date}) \quad T(C) = 300,000 \quad B(C) = 15,000 \)

\(7 \leq \text{age} \leq 24 \)

\((c, d) \)

\((\text{On the fly}) (d) \prod_{\text{name}} \)

\((\text{On the fly}) (c) \sigma_{12 < \text{age} < 20 \land \text{author} = \text{‘Olden Fames’}} \)

\((\text{Tuple-based nested loop}) \quad (b) \)

\((\text{Page-oriented - nested loop, S outer, C inner}) \quad (a) \)

\(\text{Book B (File scan)} \)

\(\text{Student S (File scan)} \)

\(\text{Checkout C (File scan)} \)

\(\text{Cost} = 0 \text{ (on the fly)} \)

\(\text{Cardinality} = 300,000 \times 1/500 \times 7/18 = 234 \text{ (approx)} \)

(assuming uniformity and independence)
\[
\begin{align*}
S&(\text{sid}, \text{name}, \text{age}, \text{addr}) & \quad T(S) = 10,000 & \quad B(S) = 1,000 \\
B&(\text{bid}, \text{title}, \text{author}) & \quad T(B) = 50,000 & \quad B(B) = 5,000 \\
C&(\text{sid}, \text{bid}, \text{date}) & \quad T(C) = 300,000 & \quad B(C) = 15,000 \\
\end{align*}
\]

\[
\text{Student S} & \quad \text{Checkout C} \\
(\text{File scan}) & \quad (\text{File scan}) \\
\]

\(\text{(Total)}\)

\[
\begin{align*}
(\text{On the fly}) & \quad (d) \quad \Pi_{\text{name}} \\
(\text{On the fly}) & \quad (c) \quad \sigma_{12<\text{age}<20 \land \text{author} = \text{‘Olden Fames’}} \\
(\text{Tuple-based nested loop}) & \quad (b) \\
(\text{Page-oriented -nested loop, S outer, C inner}) & \quad (a) \\
\end{align*}
\]

\[
\text{Book B} \quad \text{(File scan)} \\
\]

\[
\text{Total cost} = 1,515,001,000 \\
\text{Final cardinality} = 234 \text{ (approx)}
\]
Physical Query Plan – 2

Q. Compute
1. the cost and cardinality in steps (a) to (g)
2. the total cost

Assumptions (given):
• Unclustered B+tree index on B.author
• Clustered B+tree index on C.bid
• All index pages are in memory
• Unlimited memory

Student S
Checkout C
Book B

(a) $\sigma_{\text{author} = \text{'Olden Fames'}}$
(b) Π_{bid}
(c) Π_{sid}
(d) Π_{sid}
(e) $\sigma_{12 \leq \text{age} \leq 20}$
(f) Π_{name}
(g) Π_{name}

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500 7 <= age <= 24
B(bid,title,author) T(B)=50,000 B(B)=5,000
C(sid,bid,date) T(C)=300,000 B(C)=15,000 V(B,author) = 500 7 <= age <= 24

T(S)=10,000
T(B)=50,000
T(C)=300,000
B(S)=1,000
B(B)=5,000
B(C)=15,000
V(B,author) = 500
7 <= age <= 24
S(sid, name, age, addr) T(S) = 10,000 V(B, author) = 500
B(bid, title, author): Un. B+ on author T(B) = 50,000
C(sid, bid, date): Cl. B+ on bid T(C) = 300,000

7 \leq \text{age} \leq 24

\begin{align*}
\text{Cost} &= \frac{T(B)}{V(B, \text{author})} \\
&= \frac{50,000}{500} \\
&= 100 \text{ (unclustered)}
\end{align*}

\text{Cardinality} = 100
$S(sid, \text{name, age, addr})$
$B(bid, \text{title, author})$: Un. B+ on author
$C(sid, bid, \text{date})$: Cl. B+ on bid

T(S) = 10,000 B(S) = 1,000 V(B, author) = 500
T(B) = 50,000 B(B) = 5,000
T(C) = 300,000 B(C) = 15,000

7 \leq \text{age} \leq 24

\(B(S) = 1,000\)
\(B(B) = 5,000\)
\(B(C) = 15,000\)

\(T(S) = 10,000\)
\(T(B) = 50,000\)
\(T(C) = 300,000\)

\(V(B, \text{author}) = 500\)

\(\text{cost} = 0 \text{ (on the fly)}\)

\(\text{Cardinality} = 100\)
\[S(\text{sid}, \text{name}, \text{age}, \text{addr}) \quad \text{T}(S) = 10,000 \]
\[B(\text{bid}, \text{title}, \text{author}): \text{Un. B+ on author} \quad \text{B}(S) = 1,000 \]
\[C(\text{sid}, \text{bid}, \text{date}): \text{Cl. B+ on bid} \quad \text{T}(B) = 50,000 \]
\[\text{B}(B) = 5,000 \quad \text{T}(C) = 300,000 \quad \text{B}(C) = 15,000 \]

\[7 \leq \text{age} \leq 24 \]

\[\text{V}(\text{B}, \text{author}) = 500 \]

\[\text{V}(\text{C}, \text{bid}) = \frac{\text{T}(\text{C})}{\text{T}(\text{B})} = 6 \]

\[\text{Cost} \leq 100 \times 2 = 200 \]

\[\text{Cardinality} = 100 \times 6 = 600 \]

\[\text{assuming} \]
\[\text{V}(\text{C}, \text{bid}) = \text{V}(\text{B}, \text{bid}) = \text{T}(\text{B}) = 50,000 \]
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000 B(S) = 1,000 V(B, author) = 500
7 <= age <= 24
T(B) = 50,000 B(B) = 5,000
T(C) = 300,000 B(C) = 15,000

\(V(B, \text{author}) = 500 \)
7 <= age <= 24

\(S, B, C \)

Block nested loop
S inner

Indexed-nested loop,
B outer, C inner

Student S
(File scan)

Checkout C
(Index scan)

Book B
(Index scan)

Cost = 0 (on the fly)
Cardinality = 600
\[S(sid, name, age, addr) \]
\[B(bid, title, author): \text{Un. B+ on author} \]
\[C(sid, bid, date): \text{Cl. B+ on bid} \]

<table>
<thead>
<tr>
<th>Relation</th>
<th>Size</th>
<th>Block Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T(S)</td>
<td>B(S)</td>
</tr>
<tr>
<td>B</td>
<td>T(B)</td>
<td>B(B)</td>
</tr>
<tr>
<td>C</td>
<td>T(C)</td>
<td>B(C)</td>
</tr>
</tbody>
</table>

\[T(S) = 10,000 \quad B(S) = 1,000 \quad V(B, author) = 500 \]
\[7 \leq age \leq 24 \]

\[T(B) = 50,000 \quad B(B) = 5,000 \]
\[T(C) = 300,000 \quad B(C) = 15,000 \]

\[B(S) = 1000 \]

\[\text{Cardinality} = 600 \]
\(\text{(one student per checkout)} \)
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000 B(S) = 1,000 V(B, author) = 500
T(B) = 50,000 B(B) = 5,000 7 \leq age \leq 24
T(C) = 300,000 B(C) = 15,000

\begin{align*}
\text{(On the fly)} & \quad (g) \prod \text{name} \\
(\text{Block nested loop} & \quad (f) \sigma_{12 \leq \text{age} \leq 20} \\
\quad \text{S inner}) & \quad (e) \\
(\text{Indexed-nested loop,} & \quad (d) \prod \text{sid} \quad \text{(On the fly)} \\
\quad \text{B outer, C inner}) & \quad (c) \quad \text{Student S} \\
(\text{File scan}) & \quad (b) \prod \text{bid} \\
(\text{Index scan}) & \quad (a) \sigma_{\text{author} = \text{'Olden Fames'}} \\
\text{Book B} & \quad \text{Checkout C} \\
(\text{Index scan}) & \quad \text{(File scan)}
\end{align*}

\text{Cost = 0 (on the fly)}

\text{Cardinality = 600 \times 7/18 = 234 (approx)
\(S(\text{sid}, \text{name}, \text{age}, \text{addr}) \)
\(B(\text{bid}, \text{title}, \text{author}) : \text{Un. B+ on author} \)
\(C(\text{sid}, \text{bid}, \text{date}) : \text{Cl. B+ on bid} \)

\[
\begin{align*}
T(S) &= 10,000 & B(S) &= 1,000 & V(B, \text{author}) &= 500 \\
T(B) &= 50,000 & B(B) &= 5,000 & 7 \leq \text{age} \leq 24 \\
T(C) &= 300,000 & B(C) &= 15,000
\end{align*}
\]

Block nested loop S inner

Indexed-nested loop, B outer, C inner

File scan

Student S

Checkout C

Book B

Cost = 0 (on the fly)
Cardinality = 234
\[S(\text{sid}, \text{name}, \text{age}, \text{addr}) \]
\[B(\text{bid}, \text{title}, \text{author}): \text{Un. B+ on author} \]
\[C(\text{sid}, \text{bid}, \text{date}): \text{Cl. B+ on bid} \]

\[
\begin{align*}
T(S) &= 10,000 \\
B(S) &= 1,000 \\
V(B, \text{author}) &= 500 \\
7 \leq \text{age} \leq 24 \\
B(B) &= 5,000 \\
B(C) &= 15,000 \\
T(B) &= 50,000 \\
T(C) &= 300,000
\end{align*}
\]

\[
\begin{align*}
S(\text{sid}, \text{name}, \text{age}, \text{addr}) &\rightarrow \Pi_{\text{name}}(S) \\
B(\text{bid}, \text{title}, \text{author}) &\rightarrow \sigma_{12<\text{age}<20}(B) \\
C(\text{sid}, \text{bid}, \text{date}) &\rightarrow \Pi_{\text{bid}}(C) \\
&\rightarrow B(\text{bid}) \\
&\rightarrow S(\text{sid})
\end{align*}
\]

Total cost = 1300
(\text{compare with 1,515,001,000 for plan 1!})

Final cardinality = 234 (approx)
(same as plan 1!)

End of Lecture 12
Task 4: Efficiently searching the plan space

Use dynamic-programming based
Selinger’s algorithm

To be covered in Lecture 14
Heuristics for pruning plan space

• Apply predicates as early as possible
• Avoid plans with cross products
• Only left-deep join trees
Join Trees

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$

- Several possible structure of the trees
- Each tree can have $n!$ permutations of relations on leaves

(logical plan space)

(physical plan space)
- Different implementation and scanning of intermediate operators for each logical plan
Selinger Algorithm

• **Dynamic Programming based**

• **Dynamic Programming:**
 – General algorithmic paradigm
 – Exploits “principle of optimality”
 • Useful reading: Chapter 16, Introduction to Algorithms, Cormen, Leiserson, Rivest

• **Considers the search space of left-deep join trees**
 – reduces search space (only one structure)
 – but still $n!$ permutations
 – interacts well with join algos (esp. NLJ)
 – e.g. might not need to write tuples to disk if enough memory
Principle of Optimality

Optimal for “whole” made up from optimal for “parts”
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Suppose, this is an Optimal Plan for joining R1…R5:
Principle of Optimality

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$

Then, what can you say about this sub-plan?

This has to be the optimal plan for joining $R3, R2, R4, R1$

Suppose, this is an Optimal Plan for joining $R1...R5$:
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Then, what can you say about this sub-plan?

We are using the associativity and commutativity of joins:
\[
(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)
\]
\[
R \bowtie S = S \bowtie R
\]

Suppose, this is an Optimal Plan for joining R1...R5:
This has to be the optimal plan for joining R3, R2, R4.
Exploiting Principle of Optimality

Query: $\text{R1} \bowtie \text{R2} \bowtie \ldots \bowtie \text{Rn}$

Both are giving the same result
$\text{R2} \bowtie \text{R3} \bowtie \text{R1} = \text{R3} \bowtie \text{R1} \bowtie \text{R2}$

Optimal for joining R1, R2, R3

Sub-Optimal for joining R1, R2, R3
Exploiting Principle of Optimality

Suppose you chose the sub-optimal one

Leads to sub-Optimal for joining R1,…,Rn

A sub-optimal sub-plan cannot lead to an optimal plan
Notation

OPT (\{ R1, R2, R3 \}):
Cost of optimal plan to join $R1, R2, R3$

T (\{ R1, R2, R3 \}):
Number of tuples in $R1 \bowtie R2 \bowtie R3$
Simple Cost Model

\[
\text{Cost} \ (R \Join S) = T(R) + T(S)
\]

All other operators have 0 cost

Note: The simple cost model used for illustration only, it is not used in practice
Cost Model Example

\[
\text{Total Cost: } T(R) + T(S) + T(T) + T(X)
\]
Selinger Algorithm:

\[
\text{OPT (\{ R1, R2, R3 \}) : } \\
\min \left\{ \\
\text{OPT (\{ R1, R2 \}) } + T (\{ R1, R2 \}) + T(R3) \\
\text{OPT (\{ R2, R3 \}) } + T (\{ R2, R3 \}) + T(R1) \\
\text{OPT (\{ R1, R3 \}) } + T (\{ R1, R3 \}) + T(R2) \\
\right\}
\]

Note: Valid only for the simple cost model.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm

e.g. All possible permutations of R1, R3, R4 have been considered after OPT({R1, R3, R4}) has been computed.
Selinger Algorithm:

Query: \(R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \)

Q. How to optimally compute join of \{R1, R2, R3, R4\}?
Ans: First optimally join \{R1, R3, R4\} then join with R2 as inner.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Q. How to optimally compute join of \{R1, R3, R4\}?

Ans: First optimally join \{R1, R3\}, then join with R4 as inner.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Q. How to optimally compute join of \(\{R1, R3\} \)?

Ans: First optimally join \(\{R3\} \), then join with \(R1 \) as inner.

Progress of algorithm:

\(\{ R1, R2, R3, R4 \} \)

\(\{ R1, R2, R3 \} \) \(\{ R1, R2, R4 \} \) \(\{ R1, R3, R4 \} \) \(\{ R2, R3, R4 \} \)

\(\{ R1, R2 \} \) \(\{ R1, R3 \} \) \(\{ R1, R4 \} \) \(\{ R2, R3 \} \) \(\{ R2, R4 \} \) \(\{ R3, R4 \} \)

\(\{ R1 \} \) \(\{ R2 \} \) \(\{ R3 \} \) \(\{ R4 \} \)
Selinger Algorithm:

Query: \(R1 \Join R2 \Join R3 \Join R4 \)

Q. How to optimally compute join of \{R3\}?
Ans: Single relation – so optimally scan R3.
Selinger Algorithm:

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$

Final optimal plan:

NOTE: There is a one-one correspondence between the permutation $(R3, R1, R4, R2)$ and the above left deep plan
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm

NOTE: (*VERY IMPORTANT*)
- This is *NOT* done by top-down recursive calls.
- This is done BOTTOM-UP computing the optimal cost of *all* nodes in this lattice only once (dynamic programming).

\[\{ R1, R2, R3, R4 \} \]

\[\{ R1, R2, R3 \} \quad \{ R1, R2, R4 \} \quad \{ R1, R3, R4 \} \quad \{ R2, R3, R4 \} \]

\[\{ R1, R2 \} \quad \{ R1, R3 \} \quad \{ R1, R4 \} \quad \{ R2, R3 \} \quad \{ R2, R4 \} \quad \{ R3, R4 \} \]

\[\{ R1 \} \quad \{ R2 \} \quad \{ R3 \} \quad \{ R4 \} \]
More on Query Optimizations

• See the survey (on course website):
 “An Overview of Query Optimization in Relational Systems” by Surajit Chaudhuri

• Covers other aspects like
 – Pushing group by before joins
 – Merging views and nested queries
 – “Semi-join”-like techniques for multi-block queries
 • covered later in distributed databases
 – Statistics and optimizations
 – Starbust and Volcano/Cascade architecture, etc
Where are we now?

We learnt
- Relational Model and Query Languages
 - SQL, RA, RC
 - Postgres (DBMS)
 - HW1
- Database Normalization
- DBMS Internals
 - Storage
 - Indexing
 - Query Evaluation
 - Operator Algorithms
 - External sort
 - Query Optimization
- Map-reduce and spark
 - HW2

Next
- Transactions
 - Basic concepts
 - Concurrency control
 - Recovery
 - (for the next 4-5 lectures)