Deep RL

Ron Parr
CompSci 570
Q-Learning Review

• Want to maintain good properties of TD

• Learns good policies and optimal value function, not just the value of a fixed policy

• Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)
Q-learning

• Recall value iteration:

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

• Can split this into two functions:

\[Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]

\[V^{i+1}(s) = \max_a Q^{t+1}(s,a) \]
Q-learning

• Store Q values instead of a value function
• Makes selection of best action easy
• Update rule:

\[Q_{\text{temp}}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q_{\text{temp}}(s,a) \]
Q-learning Properties

- Converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:

\[
Q_{\text{temp}}(s,a) = r + \gamma \max_{a'} Q^i(s',a')
\]

\[
Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q_{\text{temp}}(s,a)
\]

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical
<table>
<thead>
<tr>
<th>Value Function Representation</th>
</tr>
</thead>
</table>

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models

- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state
Function Approximation

• General problem: Learn function $f(s)$
 • Linear regression
 • Neural networks
 • State aggregation (violates Markov property)

• Idea: Approximate $f(s)$ with $g(s,\theta)$
 • g is some easily computable function of s and θ
 • Try to find θ that minimizes the error in g
Updates with Approximation

• Recall regular Q update:

\[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{temp}(s,a) \]

• With function approximation:

• Update:

\[w^{i+1} = w^i + \alpha (Q^{temp}(s,a) - Q^i(s,a; w)) \nabla_w Q(s,a; w) \]

Neural networks are a special case of this.
Learning to play Backgammon

• Neurogammon developed in 1989 using supervised learning
 • Trained NN on expert human moves
 • Played at level of intermediate human player

• TD-gammon developed in 1992 using RL
 • Neural network value function approximation
 • TD sufficient (known model)
 • Using raw board positions, learned to play as well as neurogammon
 • Tesauro added carefully selected features to the network
 • Then had it play 1 million games played against self
 • Comparable performance to best human players
RL after TD-gammon

• For 20 years after TD-gammon, many tried to reproduce success of combination of RL with neural networks for other domains
• Often FAILED with bad policies or weights that diverged (went to infinity)

• Community largely retreated into linear value function approximation and focused on techniques for generating and selecting good features

• Deepmind Deep RL result causes seismic shift in community comparable or larger to Tesauro’s result
Switch to David Silver’s Slides