Supervised Learning

- **Given:** Training Set
- **Goal:** Good performance on test set

Assumptions:
- Training samples are independently drawn, and identically distributed (IID)
- Test set is from same distribution as training set
Fitting Continuous Data (Regression)

- Datum i has feature vector: $\phi=(\phi_1(x^{(i)}) \ldots \phi_k(x^{(i)}))$
- Has real valued target: $t^{(i)}$
- Concept space: linear combinations of features:

$$y(x^{(i)};w) = \sum_{j=1}^{k} \phi_j(x^{(i)})w_j = \phi(x^{(i)})w = \phi^{(i)}w$$

- Learning objective: Search to find “best” w
- (This is standard “data fitting” that most people learn in some form or another.)

Linearity of Regression

- Regression typically considered a linear method, but...
- Features not necessarily linear
 - and, BTW, features not necessarily linear
Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy increase from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.
- Fitting polynomials
 - Features are monomials

Features/Basis Functions

- Polynomials
- Indicators
- Gaussian densities
- Step functions or sigmoids
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...
What is “best”?

- No obvious answer to this question
- Three compatible answers:
 - Minimize squared error on training set
 - Maximize likelihood of the data
 (under certain assumptions)
 - Project data into “closest” approximation
- Other answers possible
Minimizing Squared Training Set Error

- Why is this good?
- How could this be bad?
- Minimize:

\[E(w) = \sum_{i=1}^{N} (\phi(x^{(i)})w - t^{(i)})^2 \]
Maximizing Likelihood of Data

• Assume:
 – True model is in \(H \)
 – Data have Gaussian noise
• Actually might want:

$$\text{argmax}_H P(H | X) = \frac{P(X | H)P(H)}{P(X)}$$

• Is maximizing \(P(X | H) \) a good surrogate? (maximizing over \(w \))

Maximizing \(P(X | H) \)

• Assume: \(t^{(i)} = y^{(i)} + \epsilon^{(i)} \)
• Where: \(P(\epsilon^{(i)}) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right) \)
 (Gaussian distribution w/mean 0, standard deviation \(\sigma \))
• Therefore:

$$P(t^{(i)} | x^{(i)}, w) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \varphi(x^{(i)})w)^2}{2\sigma^2}\right)$$
Maximization Continued

- Maximizing over entire data set:
 \[
 \prod_{i=1}^{n} P(t^{(i)} | \phi^{(i)}, \theta) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \phi^{(i)}w)^2}{2\sigma^2}\right)
 \]
- Maximizing equivalent log formulation: (ignoring constants)
 \[
 \sum_{i=1}^{n} - (t^{(i)} - \phi^{(i)}w)^2
 \]
- Or minimizing:
 \[
 E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2 \quad \text{Look familiar?}
 \]

Checkpoint

- So far we have considered:
 - Minimizing squared error on training set
 - Maximizing Likelihood of training set (given model, and some assumptions)
- Different approaches w/same objective!
Solving the Optimization Problem

- Nota bene: Good to keep optimization problem and optimization technique separate in your mind

- Some optimization approaches:
 - Gradient descent
 - Direct Minimization

Minimizing E by Gradient Descent

Start with initial weight vector w_0

Compute the gradient $\nabla E = \left(\frac{\partial E(w)}{\partial w_0}, \frac{\partial E(w)}{\partial w_1}, \ldots, \frac{\partial E(w)}{\partial w_n} \right)$

Compute $w \leftarrow w - \alpha \nabla E$ where α is the step size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)
Gradient Descent Issues

• For this particular problem:
 – No local optima
 – Convergence “guaranteed” if done in “batch”
• In general
 – Local optimum only (local=global for lin. regression)
 – Batch mode more stable
 – Incremental possible
 • Can oscillate
 • Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

\[E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)} w)^2 \]

\[\nabla_w E \propto \sum_{j=1}^{n} (t^{(i)} - \phi^{(i)} w) \phi^{(i)} \]

Set gradient to 0 to find min:

\[\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)} w) \phi^{(i)} = 0 \]

\[\sum_{i=1}^{n} \phi^{(i)} t^{(i)} - \phi^{(i)} w \sum_{i=1}^{n} (\phi^{(i)})^2 \phi^{(i)} = 0 \]

\[\Phi^T w - \Phi^T \Phi w = 0 \]

\[w = (\Phi^T \Phi)^{-1} \Phi^T t \]
• \(\mathbf{t} = (t^{(1)}, \ldots, t^{(n)}) \) = point in n-space
• Ranging over \(\mathbf{w} \), \(\Phi \mathbf{w} = \mathbf{H} = \)
 – column space of features
 – subspace of \(\mathbb{R}^n \) occupied by \(\mathbf{H} \)
• Goal: Find “closest” point in \(\mathbf{H} \) to \(\mathbf{t} \)
• Suppose closeness = Euclidean distance

Another Geometric Interpretation

(Euclidean distance minimized by orthogonal projection)
Minimizing Euclidean Distance

- Minimize: \(|t - \Phi w|_2^2\)
- For n data points:
 \[\sqrt{\sum_{i=1}^{n}(t^{(i)} - \phi^{(i)}w)^2}\]
- Equivalent to minimizing:
 \[\sum_{i=1}^{n}(t^{(i)} - \phi^{(i)}w)^2\]
 Look familiar?

Checkpoint

- Three different ways to pick w in H
 - Minimize squared error on training set
 - Maximize likelihood of training set
 - Distance minimizing projection into H
- All lead to same optimization problem!
 \[\arg\min_w E(w) = \sum_{i=1}^{N}(\phi^{(i)}w - t^{(i)})^2\]
Geometric Solution

- Geometric Approach (Strang)
- Let Φ be the feature (design) matrix
- Require orthogonality:

\[\forall z : (\Phi z)^T (\Phi w - t) = 0 \]

Any vector in H

Line from t to solution

\[\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0 \]

Direct Solution Continued

- When is this true: \[\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0 \]
- When:

\[\Phi^T \Phi w - \Phi^T t = 0 \]
\[w = (\Phi^T \Phi)^{-1} \Phi^T t \]

Same solution as direct minimization of error

When does the inverse exist?
Hidden Assumption

• Many of our solution methods require that our features (columns of Φ) that are linearly independent

• What if they aren’t?
 – Solution isn’t unique
 – Can use pseudoinverse (pinv in matlab)
 – Finds solution with minimum 2-norm

What if $t^{(i)}$ is a vector?

• Nothing changes!

• Scalar prediction:
 $$w = (\Phi^T \Phi)^{-1} \Phi^T t$$

• Vector prediction (exercise):
 $$W = (\Phi^T \Phi)^{-1} \Phi^T T$$

Weight matrix W and Target matrix T
Checkpoint

• What we have shown:
 – Three different ways of viewing regression as an optimization problem
 – All three lead to the same solution
• What we have not shown
 – How to pick features
 – Whether these views are the “right” objective function

What about other criteria?

• Minimizing worse case (L_∞) loss?
 \[
 \min_w \max_i (\phi^{(i)}w - t^{(i)})
 \]
 \[
 \min_w \max_i (\phi^{(i)}w - t^{(i)})
 \]
 Solve by linear program...
What is the Best Choice of Features?

Noisy Source Data

Degree 0 Fit

© 2007 Christopher Bishop
Degree 9 Fit

Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- Performance on test data:
Understanding Loss

- Suppose we have a squared error loss function: L (gets too confusing to use E)
- Define $h(x) = E[t | x]$

$$E[L] = \int \{y(x) - h(x)\}^2 p(x)dx + \int \{h(x) - t\}^2 p(x,t)dxdt$$

- Mismatch between hypothesis and target – we can influence this
- Noise in distribution of targets (nothing we can do)

Bias and Variance

$$E[L] = \int \{y(x) - h(x)\}^2 p(x)dx + \int \{h(x) - t\}^2 p(x,t)dxdt$$

Since $y(x)$ is fit to data, consider expectation over different draws of a fixed size data set for the part we control

$$E_D \{y(x;D) - h(x)\}^2$$

$$= E_D \{y(x;D) - h(x)\}^2 + E_D \{y(x;D) - E_D[y(x;D)]\}^2$$

- Bias
- Variance
Understanding Bias

\[E_D[\{y(x;D) - h(x)\}]^2 \]

- Measures how well our approximation architecture can fit the data
- Weak approximators (e.g. low degree polynomials) typically will have high bias
- Strong approximators (e.g. high degree polynomials, typically will have lower bias)

Understanding Variance

\[E_D[\{y(x;D) - E_D[y(x;D)]\}]^2 \]

- No direct dependence on target values
- For a fixed size D:
 - Strong approximators will tend to have more variance
 - Weak approximators will tend to have less variance
- Variance will typically disappear as size of D goes to infinity
Example: 20 points
\[y = x + 2 \sin(1.5x) + N(0,0.2) \]

Hypothesis space = linear in x

50 fits (20 examples each)

What are we seeing here?
Degree 9 Fit Revisited

Trade off Between Bias and Variance

- Is the problem a bad choice of polynomial?
- Is the problem that we don't have enough data?
- Answer: Yes
- Lower bias -> Higher Variance
- Higher bias -> Lower Variance
Bias and Variance: Lessons Learned

- When data are scarce relative to the “capacity” of our hypothesis space
 - Variance can be a problem
 - Restricting hypothesis space can reduce variance at cost of increased bias
- When data are plentiful
 - Variance is less of a concern
 - May afford to use richer hypothesis space

Concluding Comments

- Regression is the most basic machine learning algorithm
- Multiple views are all equivalent:
 - Minimize squared loss
 - Maximize likelihood
 - Orthogonal projection
- Big question: Choosing features
- First steps towards understanding this: Bias and variance trade off