Differential Privacy

Privacy & Fairness in Data Science
CompSci 590.01 Fall 2018
Outline

• Problem

• Differential Privacy

• Algorithms
Statistical Databases

Individuals with sensitive data:
- Person 1
- Person 2
- Person 3
- ... (Person N)

Data Collectors:
- Hospital
- Census
- Google

Data Analysts:
- Doctors
- Medical Researchers
- Economists
- Ranking Algorithms
- Machine Learning Researchers
Statistical Database Privacy

Function provided by the analyst

Output can disclose sensitive information about individuals

$\text{Person 1} \quad r_1$

$\text{Person 2} \quad r_2$

$\text{Person 3} \quad r_3$

$\text{Person N} \quad r_N$

Server

DB

$f(DB)$
Statistical Database Privacy

Privacy for individuals (controlled by a parameter ε)

$f_{private}(DB, \varepsilon)$

Server

Person 1
r_1

Person 2
r_2

Person 3
r_3

Person N
r_N

...
Statistical Database Privacy

Utility for analyst
\(f_{\text{private}}(DB) \approx f(DB) \)

\(f_{\text{private}}(DB, \varepsilon) \)

Server

DB

Person 1
\(r_1 \)

Person 2
\(r_2 \)

Person 3
\(r_3 \)

\(\cdots \)

Person N
\(r_N \)
Statistical Database Privacy (untrusted collector)

Server wants to compute f

Individuals do not want server to infer their records
Statistical Database Privacy (untrusted collector)

Perturb records to ensure privacy for individuals and Utility for server

\[f(\text{DB}^*) \]
Statistical Databases in real-world applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Data Collector</th>
<th>Private Information</th>
<th>Analyst</th>
<th>Function (utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td>Hospital</td>
<td>Disease</td>
<td>Epidemiologist</td>
<td>Correlation between disease and geography</td>
</tr>
<tr>
<td>Genome analysis</td>
<td>Hospital</td>
<td>Genome</td>
<td>Statistician/Researcher</td>
<td>Correlation between genome and disease</td>
</tr>
<tr>
<td>Advertising</td>
<td>Google/FB</td>
<td>Clicks/Browsing</td>
<td>Advertiser</td>
<td>Number of clicks on an ad by age/region/gender ...</td>
</tr>
<tr>
<td>Social Recommendations</td>
<td>Facebook</td>
<td>Friend links/profile</td>
<td>Another user</td>
<td>Recommend other users or ads to users based on social network</td>
</tr>
</tbody>
</table>
Statistical Databases in real-world applications

- Settings where data collector may not be trusted (or may not want the liability ...)

<table>
<thead>
<tr>
<th>Application</th>
<th>Data Collector</th>
<th>Private Information</th>
<th>Function (utility)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Services</td>
<td>Verizon/AT&T</td>
<td>Location</td>
<td>Traffic prediction</td>
</tr>
<tr>
<td>Recommendations</td>
<td>Amazon/Google</td>
<td>Purchase history</td>
<td>Recommendation model</td>
</tr>
<tr>
<td>Traffic Shaping</td>
<td>Internet Service Provider</td>
<td>Browsing history</td>
<td>Traffic pattern of groups of users</td>
</tr>
</tbody>
</table>
Privacy is not ...
Statistical Database Privacy is not …

• Encryption:
Statistical Database Privacy is not …

• Encryption:
 Alice sends a message to Bob such that Trudy (attacker) does not learn the message. Bob should get the correct message …

• Statistical Database Privacy:
 Bob (attacker) can access a database
 - Bob must learn aggregate statistics, but
 - Bob must not learn new information about individuals in database.
Statistical Database Privacy is not …

• Computation on Encrypted Data:
Statistical Database Privacy is not …

• Computation on Encrypted Data:
 - Alice stores encrypted data on a server controlled by Bob (attacker).
 - Server returns correct query answers to Alice, without Bob learning *anything* about the data.

• Statistical Database Privacy:
 - Bob is allowed to learn aggregate properties of the database.
Statistical Database Privacy is not …

- The Millionaires Problem:
Statistical Database Privacy is not …

• Secure Multiparty Computation:
 - A set of agents each having a private input x_i …
 - … Want to compute a function $f(x_1, x_2, \ldots, x_k)$
 - Each agent can learn the true answer, but must learn no other information than what can be inferred from their private input and the answer.

• Statistical Database Privacy:
 - Function output must not disclose individual inputs.
Statistical Database Privacy is not …

• Access Control:
Statistical Database Privacy is not …

• Access Control:
 - A set of agents want to access a set of resources (could be files or records in a database)
 - Access control rules specify who is allowed to access (or not access) certain resources.
 - ‘Not access’ usually means no information must be disclosed

• Statistical Database:
 - A single database and a single agent
 - Want to release aggregate statistics about a set of records without allowing access to individual records
Privacy Problems

• In today's systems a number of privacy problems arise:
 – Encryption when communicating data across a unsecure channel
 – Secure Multiparty Computation when different parties want to compute on a function on their private data without using a centralized third party
 – Computing on encrypted data when one wants to use an unsecure cloud for computation
 – Access control when different users own different parts of the data

• Statistical Database Privacy: Quantifying (and bounding) the amount of information disclosed about individual records by the output of a valid computation.
What is privacy?
Desiderata for a Privacy Definition

1. **Resilience to background knowledge**
 - A privacy mechanism must be able to protect individuals’ privacy from attackers who may possess background knowledge.

2. **Privacy without obscurity**
 - Attacker must be assumed to know the algorithm used as well as all parameters [MK15].

3. **Post-processing**
 - Post-processing the output of a privacy mechanism must not change the privacy guarantee [KL10, MK15].

4. **Composition over multiple releases**
 - Allow a graceful degradation of privacy with multiple invocations on the same data [DN03, GKS08].
Privacy Breach: Attempt 1

A privacy mechanism $M(D)$ that allows an unauthorized party to learn sensitive information about any individual in D, which could not have learnt without access to $M(D)$.
Alice + SMOKING & PASSIVE SMOKING CAUSES CANCER = Alice has Cancer

Is this a privacy breach? NO
Privacy Breach: Attempt 2

A privacy mechanism $M(D)$ that allows an unauthorized party to learn sensitive information about any individual Alice in D, which could not have been learnt even with access to $M(D)$ if Alice was not in the dataset.
Outline

• Problem

• Differential Privacy

• Algorithms
Differential Privacy

For every pair of inputs that differ in one row

D_1 D_2

Adversary should not be able to distinguish between any D_1 and D_2 based on any O

For every output ...

[ln $\left(\frac{\Pr[A(D_1) = o]}{\Pr[A(D_2) = o]} \right) \leq \varepsilon, \quad \varepsilon > 0$]
Why pairs of datasets *that differ in one row*?

For every pair of inputs that differ in one row

```
D1

D2
```

For every output ...

```
O
```

Simulate the presence or absence of a single record
Why *all* pairs of datasets …?

For every pair of inputs that differ in one row

For every output …

Guarantee holds no matter what the other records are.
Why *all* outputs?

\[\text{Set of all outputs} \]

\[A(D_1) = O_1 \]

\[P [A(D_1) = O_1] \]

\[A(D_2) = O_k \]

\[P [A(D_2) = O_k] \]
Should not be able to distinguish whether input was D_1 or D_2 no matter what the output.
Privacy Parameter ε

For every pair of inputs that differ in one row

For every output ...

$$\Pr[A(D_1) = o] \leq e^{\varepsilon} \Pr[A(D_2) = o]$$

Controls the degree to which D_1 and D_2 can be distinguished. Smaller the ε more the privacy (and better the utility)
Desiderata for a Privacy Definition

1. Resilience to background knowledge
 – A privacy mechanism must be able to protect individuals’ privacy from attackers who may possess background knowledge

2. Privacy without obscurity
 – Attacker must be assumed to know the algorithm used as well as all parameters [MK15]

3. Post-processing
 – Post-processing the output of a privacy mechanism must not change the privacy guarantee [KL10, MK15]

4. Composition over multiple releases
 – Allow a graceful degradation of privacy with multiple invocations on the same data [DN03, GKS08]
Differential Privacy

• Two equivalent definitions:

\[
\Pr[A(D_1) \in \Omega] \leq e^\varepsilon \Pr[A(D_2) \in \Omega]
\]

Every subset of outputs

\[
\Pr[A(X) \in \Omega] \leq e^{\varepsilon \cdot d(X,Y)} \Pr[A(Y) \in \Omega]
\]

Number of row additions and deletions to change X to Y
Outline

• Problem

• Differential Privacy

• Algorithms
Non-trivial deterministic Algorithms do not satisfy differential privacy

Space of all inputs

Space of all outputs (at least 2 distinct outputs)
Non-trivial deterministic Algorithms do not satisfy differential privacy

Each input mapped to a distinct output.
There exist two inputs that differ in one entry mapped to different outputs.
Random Sampling …

… also does not satisfy differential privacy

\[\Pr[D_2 \rightarrow O] = 0 \text{ implies } \log \left(\frac{\Pr[D_1 \rightarrow O]}{\Pr[D_2 \rightarrow O]} \right) = \infty \]
Randomized Response (a.k.a. local randomization)

<table>
<thead>
<tr>
<th>D</th>
<th>Disease (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

O

<table>
<thead>
<tr>
<th>Disease (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

With probability p, Report true value

With probability $1-p$, Report flipped value
Differential Privacy Analysis

• Consider 2 databases D, D' (of size M) that differ in the j^{th} value
 – $D[j] \neq D'[j]$. But, $D[i] = D'[i]$, for all $i \neq j$

• Consider some output O

\[
\frac{P(D \rightarrow O)}{P(D' \rightarrow O)} \leq e^\varepsilon \iff \frac{1}{1 + e^\varepsilon} < p < \frac{e^\varepsilon}{1 + e^\varepsilon}
\]
Next class

• Basic Algorithmic Primitives

• Composition