Fairness in ML 2: Equal opportunity and odds

Privacy & Fairness in Data Science
CompSci 590.01 Fall 2018

Slides adapted from https://fairmlclass.github.io/4.html
Outline

• Observational measure of fairness
 – Issues with Disparate Impact
 – Equal opportunity and Equalized odds
 – Positive Rate Parity
 – Tradeoff

• Achieving Equalized Odds
 – Binary Classifier
Supervised Learning

<table>
<thead>
<tr>
<th>X1</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>Race</th>
<th>Bail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[P_a\{E\} = P\{E \mid A = a\}. \]
Demographic parity
(or the reverse of disparate impact)

Definition. Classifier C satisfies *demographic parity* if C is independent of A.

When C is binary 0/1-variables, this means

$$\mathbb{P}_a\{C = 1\} = \mathbb{P}_b\{C = 1\}$$

for all groups a, b.

Approximate versions:

$$\frac{\mathbb{P}_a\{C = 1\}}{\mathbb{P}_b\{C = 1\}} \geq 1 - \epsilon$$

$$|\mathbb{P}_a\{C = 1\} - \mathbb{P}_b\{C = 1\}| \leq \epsilon$$
Demographic parity Issues

\[Y = 1 \]

[Diagram showing parity with \(A = 1 \) and \(A = 0 \)]
Demographic parity Issues

• Does not seem “fair” to allow random performance on \(A = 0 \)
• Perfect classification is impossible
Perfect Classifier and Fairness

• The perfect classifier may not ensure demographic parity
 – Y is correlated with A

• What if we did not know how the classifier C was created?
 – No access to the classifier (to retrain)
 – No access to the training data (human created classifier)
True Positive Parity (TPP)
(or equal opportunity)

Assume C and Y are binary 0/1-variables.

Definition. Classifier C satisfies *true positive parity* if

$$P_a\{C = 1 \mid Y = 1\} = P_b\{C = 1 \mid Y = 1\} \text{ for all groups } a, b.$$

- When positive outcome (1) is desirable
- Equivalently, primary harm is due to false negatives
 - Deny bail when person will not recidivate
TPP

• Forces similar performance on $Y = 1$
False Positive Parity (FPP)

Assume C and Y are binary 0/1-variables.

Definition. Classifier C satisfies *false positive parity* if

\[P_a\{C = 1 \mid Y = 0\} = P_b\{C = 1 \mid Y = 0\} \] for all groups a, b.

• TPP + FPP: Equalized Odds, or Positive Rate Parity

\[R \text{ satisfies equalized odds if} \]

\[R \text{ is conditionally independent of } A \text{ given } Y. \]
Positive Rate Parity

\[A = 1 \]

\[A = 0 \]
Predictive Value Parity

Assume \(C \) and \(Y \) are binary 0/1-variables.

Definition. Classifier \(C \) satisfies
- **positive predictive value parity** if for all groups \(a, b \):
 \[
P_a\{Y = 1 \mid C = 1\} = P_b\{Y = 1 \mid C = 1\}
\]
- **negative predictive value parity** if for all groups \(a, b \):
 \[
P_a\{Y = 1 \mid C = 0\} = P_b\{Y = 1 \mid C = 0\}
\]
- **predictive value parity** if it satisfies both of the above.

Equalized chance of success given acceptance
Predictive Value Parity

\[
P_1[Y = 1 \mid C = 1] = \frac{7}{10}
\]

\[
P_0[Y = 1 \mid C = 1] = \frac{3}{5}
\]

\[
P_1[Y = 1 \mid C = 0] = \frac{4}{10}
\]

\[
P_0[Y = 1 \mid C = 0] = \frac{1}{5}
\]
Predictive Value Parity

For $A = 1$:

- $P_1[Y = 1 | C = 1] = \frac{8}{9}$
- $P_1[Y = 1 | C = 0] = 0$

For $A = 0$:

- $P_0[Y = 1 | C = 1] = \frac{1}{3}$
- $P_0[Y = 1 | C = 0] = 0$
Trade-off

Proposition. Assume differing base rates and an imperfect classifier $C \neq Y$. Then, either

- positive rate parity fails, or
- predictive value parity fails.

• We will look at a similar result later in the course due to Kleinberg, Mullainathan and Raghavan (2016)
Outline

• Observational measure of fairness
 – Issues with Disparate Impact
 – Equal opportunity and Equalized odds
 – Positive Rate Parity
 – Tradeoff

• Achieving Equalized Odds
 – Binary Classifier
Equalized Odds

\(R \) satisfies equalized odds if \(R \) is conditionally independent of \(A \) given \(Y \).

• Derived Classifier: A new classifier \(\tilde{C} \) that only depends on \(C, A \) (and \(Y \))
Derived Classifier

$P_1[C = 1 \mid Y = 0] \neq P_0[C = 1 \mid Y = 0]$
Derived Classifier

• Options for \tilde{C}:

 – $\tilde{C} = C$

 – $\tilde{C} = 1 - C$

 – $\tilde{C} = 1$

 – $\tilde{C} = 0$

 – Or some randomized combination of these

\tilde{C} is in the enclosed region
Derived Classifier

For equal odds, result lies below all ROC curves.

$P_A[C = 1 \mid Y = 1]$

$P_A[C = 1 \mid Y = 0]$

\tilde{C} is in this region for $A = 0$

\tilde{C} is in this region for $A = 1$
Summary: Multiple fairness measures

- Demographic parity or disparate impact
 - Pro: Used in the law
 - Con: Perfect classification is impossible
 - Achieved by modifying training data

- Equal Odds/ Opportunity
 - Pro: Perfect classification is possible
 - Con: Different groups can get rates of positive prediction
 - Achieved by post processing the classifier
Summary: Multiple fairness measures

• Equal odds/opportunity
 – Different groups may be treated unequally
 – Maybe due to the problem
 – Maybe due to bias in the dataset

• While demographic parity seems like a good fairness goal for the society, …
 Equal odds/opportunity seems to be measuring whether an algorithm is fair (independent of other factors like input data).
Summary: Multiple fairness measures

• Fairness through Awareness:
 – Need to define a distance function $d(x,x')$
 – A guarantee at the individual level (rather than on groups)
 – How does this connect to other notions of fairness?