Relational Model and Algebra

Introduction to Databases

CompSci 316 Fall 2019
Announcements (Wed. Aug. 28)

• Sign up for Piazza, NOW!
• Gradiance RA Exercise assigned; due in a week
 • See “Help/Getting Started with Gradiance” of the course website
• Homework 1 posted today; due in 2½ weeks
 • See “Help/Submitting Non-Gradiance Work” for instructions on Gradescope
• Set up VM (virtual machine)
 • See “Help/VM-related” for instructions
 • Google Cloud coupon email sent
• Check Sakai email archive for any missed announcements
• I don’t have office hours today—make a (private) post on Piazza if there’s something urgent
• TA/UTA office hours to be posted soon
Edgar F. Codd (1923-2003)

- Pilot in the Royal Air Force in WW2
- Inventor of the relational model and algebra while at IBM
- Turing Award, 1981
Relational data model

- A database is a collection of relations (or tables)
- Each relation has a set of attributes (or columns)
- Each attribute has a name and a domain (or type)
 - Set-valued attributes are not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are duplicates if they agree on all attributes

☞ Simplicity is a virtue!
Example

Ordering of rows doesn’t matter (even though output is always in some order)

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>gid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Book Club</td>
</tr>
<tr>
<td>gov</td>
<td>Student Government</td>
</tr>
<tr>
<td>dps</td>
<td>Dead Putting Society</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Schema vs. instance

- **Schema (metadata)**
 - Specifies the logical structure of data
 - Is defined at setup time
 - Rarely changes

- **Instance**
 - Represents the data content
 - Changes rapidly, but always conforms to the schema

Compare to **types vs. collections of objects of these types** in a programming language
Example

• Schema
 • User (uid int, name string, age int, pop float)
 • Group (gid string, name string)
 • Member (uid int, gid string)

• Instance
 • User: \{\langle 142, \text{Bart}, 10, 0.9 \rangle, \langle 857, \text{Milhouse}, 10, 0.2 \rangle, \ldots \}\n • Group: \{\langle \text{abc}, \text{Book Club} \rangle, \langle \text{gov}, \text{Student Government} \rangle, \ldots \}\n • Member: \{\langle 142, \text{dps} \rangle, \langle 123, \text{gov} \rangle, \ldots \\}
Relational algebra

A language for querying relational data based on “operators”

• Core operators:
 • Selection, projection, cross product, union, difference, and renaming

• Additional, derived operators:
 • Join, natural join, intersection, etc.

• Compose operators to make complex queries
Selection

• Input: a table R
• Notation: $\sigma_p R$
 • p is called a selection condition (or predicate)
• Purpose: filter rows according to some criteria
• Output: same columns as R, but only rows or R that satisfy p
Selection example

• Users with popularity higher than 0.5

$$\sigma_{pop > 0.5} \text{User}$$
More on selection

• Selection condition can include any column of R, constants, comparison ($=$, \leq, etc.) and Boolean connectives (\land: and, \lor: or, \neg: not)
 • Example: users with popularity at least 0.9 and age under 10 or above 12
 $$\sigma_{pop \geq 0.9 \land (age < 10 \lor age > 12)} User$$

• You must be able to evaluate the condition over each single row of the input table!
 • Example: the most popular user
 $$\sigma_{\text{pop } \geq \text{ every pop in User}} User$$

WRONG!
Projection

• Input: a table R
• Notation: $\pi_L R$
 • L is a list of columns in R
• Purpose: output chosen columns
• Output: same rows, but only the columns in L
Projection example

- IDs and names of all users

\[\pi_{uid,\text{name}} \text{User} \]

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
More on projection

• Duplicate output rows are removed (by definition)
 • Example: user ages

$$\pi_{age} User$$

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Cross product

• Input: two tables R and S
• Natation: $R \times S$
• Purpose: pairs rows from two tables
• Output: for each row r in R and each s in S, output a row rs (concatenation of r and s)
Cross product example

$User \times Member$

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td>857</td>
<td>gov</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>gov</td>
</tr>
</tbody>
</table>

...
A note on column ordering

• Ordering of columns is unimportant as far as contents are concerned

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>857</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>gov</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ... | ...

• So cross product is **commutative**, i.e., for any R and S, $R \times S = S \times R$ (up to the ordering of columns)
Derived operator: join

(A.k.a. “theta-join”)

• Input: two tables R and S

• Notation: $R \Join_p S$
 • p is called a join condition (or predicate)

• Purpose: relate rows from two tables according to some criteria

• Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p

• Shorthand for $\sigma_p (R \times S)$
Join example

• Info about users, plus IDs of their groups

\[\text{User} \bowtie_{\text{User.uid} = \text{Member.uid}} \text{ Member} \]

Prefix a column reference with table name and “.” to disambiguate identically named columns from different tables.

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
<td>123</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
<td>857</td>
<td>abc</td>
</tr>
</tbody>
</table>

...
Derived operator: natural join

• Input: two tables R and S
• Notation: $R \bowtie S$
• Purpose: relate rows from two tables, and
 • Enforce equality between identically named columns
 • Eliminate one copy of identically named columns
• Shorthand for $\pi_L(R \bowtie_p S)$, where
 • p equates each pair of columns common to R and S
 • L is the union of column names from R and S (with duplicate columns removed)
Natural join example

\[User \bowtie Member = \pi_? (User \bowtie_? Member) \]
\[= \pi_{uid, name, age, pop, gid} \left(User \bowtie_{User.uid= Member.uid} Member \right) \]
Union

• Input: two tables R and S

• Notation: $R \cup S$
 - R and S must have identical schema

• Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S (with duplicate rows removed)
Difference

• Input: two tables R and S
• Notation: $R - S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows in R that are not in S
Derived operator: intersection

• Input: two tables R and S
• Notation: $R \cap S$
 • R and S must have identical schema
• Output:
 • Has the same schema as R and S
 • Contains all rows that are in both R and S
• Shorthand for $R - (R - S)$
• Also equivalent to $S - (S - R)$
• And to $R \bowtie S$
Renaming

• Input: a table R
• Notation: $\rho_S R$, $\rho(A_1,A_2,...) R$, or $\rho_S(A_1,A_2,...) R$
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as R, but called differently
• Used to
 • Avoid confusion caused by identical column names
 • Create identical column names for natural joins
• As with all other relational operators, it doesn’t modify the database
 • Think of the renamed table as a copy of the original
Renaming example

• IDs of users who belong to at least two groups
 \[Member \bowtie_? Member \]

\[\pi_{uid} \left(Member \bowtie_{Member.uid=Member.uid \land Member.gid=member.gid} Member \right) \]

\[\pi_{uid_1} \left(\rho_{(uid_1,gid_1)} Member \bowtie_{uid_1=uid_2 \land gid_1 \neq gid_2} \rho_{(uid_2,gid_2)} Member \right) \]
Expression tree notation

\[\prod_{uid_1} (\rho_{uid_1,gid_1} \bowtie (uid_1=uid_2 \land gid_1 \neq gid_2) \rho_{uid_2,gid_2}) \]

\[Member \]

\[Member \]
Summary of core operators

• Selection: $\sigma_p R$
• Projection: $\pi_L R$
• Cross product: $R \times S$
• Union: $R \cup S$
• Difference: $R - S$
• Renaming: $\rho_S(A_1,A_2,...) R$
 • Does not really add “processing” power
Summary of derived operators

• Join: $R \bowtie_p S$
• Natural join: $R \bowtie S$
• Intersection: $R \cap S$
• Many more
 • Semijoin, anti-semijoin, quotient, ...
An exercise

• Names of users in Lisa’s groups

Writing a query bottom-up:

Who’s Lisa?

\[\sigma_{name=\text{"Lisa"}}\]

User

Lisa’s groups

\[\pi_{gid}\]

Member

Users in Lisa’s groups

\[\pi_{uid}\]

User

Their names \[\pi_{name}\]
Another exercise

• IDs of groups that Lisa doesn’t belong to

Writing a query top-down:

\[\pi_{gid} \left(\pi_{gid} \left(\mathcal{G} \right) \right) \]

\[\mathcal{G} \quad \bowtie \quad \mathcal{M} \quad \sigma_{name = "Lisa"} \quad \mathcal{U} \]

- All group IDs
- IDs of Lisa’s groups
- Group
- Member
- User
A trickier exercise

• Who are the most popular?
 • Who do NOT have the highest pop rating?
 • Whose pop is lower than somebody else’s?

A deeper question:
When (and why) is “—” needed?
Monotone operators

• If some old output rows may need to be removed
 • Then the operator is non-monotone

• Otherwise the operator is monotone
 • That is, old output rows always remain “correct” when more rows are added to the input

• Formally, for a monotone operator op:
 $R \subseteq R'$ implies $op(R) \subseteq op(R')$ for any R, R'
Classification of relational operators

• Selection: $\sigma_p R$ Monotone
• Projection: $\pi_L R$ Monotone
• Cross product: $R \times S$ Monotone
• Join: $R \bowtie_p S$ Monotone
• Natural join: $R \bowtie S$ Monotone
• Union: $R \cup S$ Monotone
• Difference: $R - S$ Monotone w.r.t. R; non-monotone w.r.t S
• Intersection: $R \cap S$ Monotone
Why is “−” needed for “highest”?

• Composition of monotone operators produces a monotone query
 • Old output rows remain “correct” when more rows are added to the input

• Is the “highest” query monotone?
 • No!
 • Current highest \(pop \) is 0.9
 • Add another row with \(pop \) 0.91
 • Old answer is invalidated

 FSM So it must use difference!
Why do we need core operator X?

- Difference
 - The only non-monotone operator
- Projection
 - The only operator that removes columns
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?
- Selection?
 - Homework problem
Extensions to relational algebra

• Duplicate handling ("bag algebra")
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow new column values to be computed

❖ All these will come up when we talk about SQL
❖ But for now we will stick to standard relational algebra without these extensions
Why is r.a. a good query language?

• Simple
 • A small set of core operators
 • Semantics are easy to grasp

• Declarative?
 • Yes, compared with older languages like CODASYL
 • Though operators do look somewhat “procedural”

• Complete?
 • With respect to what?
Relational calculus

• \{u.uid \mid u \in User \land
\neg(\exists u' \in User: u.pop < u'.pop), or

• \{u.uid \mid u \in User \land
(\forall u' \in User: u.pop \geq u'.pop)\}

• Relational algebra = “safe” relational calculus
 • Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 • And vice versa

• Example of an “unsafe” relational calculus query
 • \{u.name \mid \neg(u \in User)\}
 • Cannot evaluate it just by looking at the database
Turing machine

• A conceptual device that can execute any computer algorithm
• Approximates what general-purpose programming languages can do
 • E.g., Python, Java, C++, ...

ighted So how does relational algebra compare with a Turing machine?
Limits of relational algebra

• Relational algebra has no recursion
 • Example: given relation \(\text{Friend}(uid1, uid2) \), who can Bart reach in his social network with any number of hops?
 • Writing this query in r.a. is impossible!
 • So r.a. is not as powerful as general-purpose languages

• But why not?
 • Optimization becomes undecidable
 • Simplicity is empowering
 • Besides, you can always implement it at the application level, and recursion is added to SQL nevertheless!