Relational Database Design Theory

Introduction to Databases
CompSci 316 Fall 2019

DUKE
COMPUTER SCIENCE
Announcements (Mon. Sep. 9)

• Gradiance ER due this Wednesday
• Gradiance FD and MVD assigned
• Homework 1 due next Monday (11:59pm)
 • RA debugger for Problem 1 available at https://ratest.cs.duke.edu/
• Course project description posted
 • Read it!
 • “Mixer” in a week and a half
 • Milestone 1 right after fall break
• Teamwork required: 5 people per team on average
Motivation

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>dps</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>gov</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>abc</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Why is UserGroup \((uid, uname, gid)\) a bad design?
 - It has **redundancy**—user name is recorded multiple times, once for each group that a user belongs to
 - Leads to **update, insertion, deletion anomalies**
- Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 - **Dependencies, decompositions, and normal forms**
Functional dependencies

- A **functional dependency** (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>

Must be b
Could be anything
FD examples

Address (street_address, city, state, zip)
• street_address, city, state → zip
• zip → city, state
• zip, state → zip?
 • This is a trivial FD
 • Trivial FD: LHS ⊇ RHS
• zip → state, zip?
 • This is non-trivial, but not completely non-trivial
 • Completely non-trivial FD: LHS ∩ RHS = ∅
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”

- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

- Is K a key of R?
 - What are all the keys of R?
Attribute closure

• Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2\ldots$)

• Algorithm for computing the closure
 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added
A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

• $uid \rightarrow uname, twitterid$
• $twitterid \rightarrow uid$
• $uid, gid \rightarrow fromDate$

Not a good design, and we will see why shortly
Example of computing closure

- \(\{\text{gid, twitterid}\}^+ = ? \)
- twitterid \(\rightarrow\) uid
 - Add uid
 - Closure grows to \(\{\text{gid, twitterid, uid}\} \)
- uid \(\rightarrow\) uname, twitterid
 - Add uname, twitterid
 - Closure grows to \(\{\text{gid, twitterid, uid, uname}\} \)
- uid, gid \(\rightarrow\) fromDate
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup
Using attribute closure

Given a relation \(R \) and set of FD’s \(\mathcal{F} \)

- **Does another FD** \(X \rightarrow Y \) **follow from** \(\mathcal{F} \)?
 - Compute \(X^+ \) with respect to \(\mathcal{F} \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follows from \(\mathcal{F} \)

- **Is** \(K \) **a key of** \(R \)?
 - Compute \(K^+ \) with respect to \(\mathcal{F} \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is *minimal* (how?)
Rules of FD’s

• Armstrong’s axioms
 • Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 • Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 • Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• Rules derived from axioms
 • Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 • Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That a should be mapped to b is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

- **uid** → **uname**, **twitterid**

(... plus other FD’s)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Eliminates redundancy
- To get back to the original relation: ☒
Unnecessary decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
</tbody>
</table>

- **Fine**: join returns the original relation
- **Unnecessary**: no redundancy is removed; schema is more complicated (and *uid* is stored twice!)
Bad decomposition

- Association between gid and $fromDate$ is lost
- Join returns more rows than the original relation
Lossless join decomposition

• Decompose relation R into relations S and T
 • $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 • $S = \pi_{\text{attrs}(S)}(R)$
 • $T = \pi_{\text{attrs}(T)}(R)$

• The decomposition is a **lossless join decomposition** if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

• Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 • A **lossy** decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

No way to tell which is the original relation
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in **Boyce-Codd Normal Form** if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key \rightarrow other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)
 $\overset{\text{Then it is guaranteed to be a lossless join}}{\rightarrow}$
 decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

• Repeat until all relations are in BCNF
BCNF decomposition example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: \(uid \rightarrow \text{uname, twitterid} \)

User (uid, uname, twitterid)

uid \rightarrow \text{uname, twitterid}

twitterid \rightarrow \text{uid}

BCNF

Member (uid, gid, fromDate)

uid, gid \rightarrow \text{fromDate}

BCNF
Another example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: \(twitterid \rightarrow uid \)

UserId (twitterid, uid)

BCNF

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: \(twitterid \rightarrow uname \)

UserName (twitterid, uname)

BCNF

Member (twitterid, gid, fromDate)

BCNF
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:
 $$ R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) $$
 - Sure; and it doesn’t depend on the FD

- Anything that comes back in the join must be in the original relation:
 $$ R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) $$
 - Proof will make use of the fact that $X \rightarrow Y$
Recap

• Functional dependencies: a generalization of the key concept
• Non-key functional dependencies: a source of redundancy
• BCNF decomposition: a method for removing redundancies
 • BNCF decomposition is a lossless join decomposition
• BCNF: schema in this normal form has no redundancy due to FD’s
BCNF = no redundancy?

• User (uid, gid, place)
 • A user can belong to multiple groups
 • A user can register places she’s visited
 • Groups and places have nothing to do with other
 • FD’s?
 • None
 • BCNF?
 • Yes
 • Redundancies?
 • Tons!

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Morocco</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multivalued dependencies

• A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

• $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
MVD examples

User (uid, gid, place)

- $uid \rightarrow gid$
- $uid \rightarrow place$
 - Intuition: given uid, gid and $place$ are “independent”
- $uid, gid \rightarrow place$
 - Trivial: $LHS \cup RHS = \text{all attributes of } R$
- $uid, gid \rightarrow uid$
 - Trivial: $LHS \supseteq RHS$
Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If $X \rightarrow Y$, then $X \rightarrow \text{attrs}(R) \setminus X \setminus Y$
- MVD augmentation:
 If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity:
 If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z \setminus Y$
- Replication (FD is MVD):
 If $X \rightarrow Y$, then $X \rightarrow Y$
 Try proving things using these!
- Coalescence:
 If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

• Given a set of FD’s and MVD’s \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure

 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Need:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow C$</td>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

| | $B \rightarrow C$ | a | b_2 | c_1 | d_1 |
| | a | b_2 | c_2 | d_1 |

| | $B \rightarrow C$ | a | b_1 | c_1 | d_1 |
| | a | b_1 | c_2 | d_1 |
Another proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Have: \[A \rightarrow B \quad b_1 = b_2 \]

Need: \[B \rightarrow C \quad c_1 = c_2 \]

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities
Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

$A \rightarrow BC$

Counterexample!

Need: $b_1 = b_2$ ☹
4NF

• A relation \(R \) is in Fourth Normal Form (4NF) if
 • For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
 • That is, all FD’s and MVD’s follow from “key \(\rightarrow \) other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

• 4NF is stronger than BCNF
 • Because every FD is also a MVD
4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User (uid, gid, place)
4NF violation: uid → gid

Member (uid, gid)
4NF

Visited (uid, place)
4NF
Summary

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 - You could have multiple keys though
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic