Parallel Data Processing†

Introduction to Databases
CompSci 316 Fall 2019

†Some contents are drawn and adapted from slides by Madga Balazinska at U. Washington
Announcements (Wed., Nov. 20)

• **Homework 4** due Mon. after Thanksgiving break
• Piazza project weekly progress update due today
Announcements (Mon., Nov. 25)

- Homework 4 due in a week
- No Piazza project weekly update due this week
Parallel processing

• Improve performance by executing multiple operations in parallel

• Cheaper to scale than relying on a single increasingly more powerful processor

• Performance metrics
 • **Speedup**, in terms of completion time
 • **Scaleup**, in terms of time per unit problem size
 • **Cost**: completion time \times # processors \times (cost per processor per unit time)
Speedup

• Increase # processors → how much faster can we solve the same problem?
 • Overall problem size is fixed
Scaleup

- Increase # processors and problem size proportionally → can we solve bigger problems in the same time?
 - Per-processor problem size is fixed
Cost

• Fix problem size

• Increase problem size proportionally with # processors
Why linear speedup/scaleup is hard

- Startup
 - Overhead of starting useful work on many processors
- Communication
 - Cost of exchanging data/information among processors
- Interference
 - Contention for resources among processors
- Skew
 - Slowest processor becomes the bottleneck
Shared-nothing architecture

- Most scalable (vs. shared-memory and shared-disk)
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program
Parallel query evaluation opportunities

• **Inter-query** parallelism
 • Each query can run on a different processor

• **Inter-operator** parallelism
 • A query runs on multiple processors
 • Each operator can run on a different processor

• **Intra-operator** parallelism
 • An operator can run on multiple processors, each working on a different “split” of data/operation

☞ Focus of this lecture
A brief tour of three approaches

• “DB”: parallel DBMS, e.g., Teradata
 • Same abstractions (relational data model, SQL, transactions) as a regular DBMS
 • Parallelization handled behind the scene

• “BD (Big Data)” 15 years go: MapReduce, e.g., Hadoop
 • Easy scaling out (e.g., adding lots of commodity servers) and failure handling
 • Input/output in files, not tables
 • Parallelism exposed to programmers

• “BD” today: Spark
 • Compared to MapReduce: smarter memory usage, recovery, and optimization
 • Higher-level DB-like abstractions (but still no updates)
Parallel DBMS

E.g.: TERADATA
Horizontal data partitioning

- Split a table R into p chunks, each stored at one of the p processors
- Splitting strategies:
 - Round robin assigns the i-th row assigned to chunk $(i \mod p)$
 - Hash-based partitioning on attribute A assigns row r to chunk $(h(r, A) \mod p)$
 - Range-based partitioning on attribute A partitioning the range of $R.A$ values into p ranges, and assigns row r to the chunk whose corresponding range contains $r.A$
Teradata: an example parallel DBMS

- Hash-based partitioning of Customer on cid

A Customer row is inserted

Each Customer is assigned to an AMP

AMP = unit of parallelism in Teradata
Example query in Teradata

- Find all orders today, along with the customer info

```sql
SELECT *
FROM Order o, Customer c
WHERE o.cid = c.cid
AND o.date = today();
```
Teradata example: scan-filter-hash

Consistent with partitioning of Customer; each Order row is routed to the AMP storing the Customer row with the same cid.
Teradata example: hash join

Each AMP processes Order and Customer rows with the same cid hash.
MapReduce: motivation

- Many problems can be processed in this pattern:
 - Given a lot of unsorted data
 - **Map**: extract something of interest from each record
 - **Shuffle**: group the intermediate results in some way
 - **Reduce**: further process (e.g., aggregate, summarize, analyze, transform) each group and write final results
 (Customize map and reduce for problem at hand)

- Make this pattern easy to program and efficient to run
 - Original Google paper in *OSDI* 2004
 - Hadoop has been the most popular open-source implementation
 - Spark still supports it
M/R programming model

• Input/output: each a collection of key/value pairs

• Programmer specifies two functions
 • map: \((k_1, v_1) \rightarrow \text{list}(k_2, v_2)\)
 • Processes each input key/value pair, and produces a list of intermediate key/value pairs
 • reduce: \((k_2, \text{list}(v_2)) \rightarrow \text{list}(v_3)\)
 • Processes all intermediate values associated with the same key, and produces a list of result values (usually just one for the key)
M/R execution

Reduce tasks:

Shuffle:

Map tasks:

Distributed file system

Final results go to distributed file system

Intermediate results go to local disk

Each map task gets an input “split”

Data not necessary local

Distributed file system (e.g., HDFS)
M/R example: word count

• Expected input: a huge file (or collection of many files) with millions of lines of English text
• Expected output: list of (word, count) pairs
• Implementation
 • map(_, line) → list(word, count)
 • Given a line, split it into words, and output \((w, 1)\) for each word \(w\) in the line
 • reduce(word, list(count)) → (word, count)
 • Given a word \(w\) and list \(L\) of counts associated with it, compute \(s = \sum_{count \in L} count\) and output \((w, s)\)
• Optimization: before shuffling, map can pre-aggregate word counts locally so there is less data to be shuffled
 • This optimization can be implemented in Hadoop as a “combiner”
Some implementation details

• There is one “master” node
• Input file gets divided into m “splits,” each a contiguous piece of the file
• Master assigns m map tasks (one per split) to “workers” and tracks their progress
• Map output is partitioned into r “regions”
• Master assigns r reduce tasks (one per region) to workers and tracks their progress
• Reduce workers read regions from the map workers’ local disks
• When there are more tasks than workers, tasks execute in “waves”
 • Boundaries between waves are usually blurred
• Reduce tasks can’t start until all map tasks are done
More implementation details

• Numbers of map and reduce tasks
 • Larger is better for load balancing
 • But more tasks add overhead and communication

• Worker failure
 • Master pings workers periodically
 • If one is down, reassign its split/region to another worker

• “Straggler”: a machine that is exceptionally slow
 • Pre-emptively run the last few remaining tasks redundantly as backup
M/R example: Hadoop TeraSort

- Expected input: a collection of (key, payload) pairs
- Expected output: sorted (key, payload) pairs
- Implementation
 - Using a small sample of input, find \(r - 1 \) key values that divides the key range into \(r \) subranges where \# pairs is roughly equal across them
 - map \((k, \text{payload}) \rightarrow (j, \langle k, \text{payload} \rangle)\)
 - If \(k \) falls within the \(j \)-th subrange
 - reduce \((j, \text{list(\langle k, \text{payload} \rangle)}) \rightarrow \text{list(}k, \text{ }\text{payload})\)
 - Sort the list of \((k, \text{payload})\) pairs by \(k \) and output
Parallel DBMS vs. MapReduce

• **Parallel DBMS**
 - Schema + intelligent indexing/partitioning
 - Can stream data from one operator to the next
 - SQL + automatic optimization

• **MapReduce**
 - No schema, no indexing
 - Higher scalability and elasticity
 - Just throw new machines in!
 - Better handling of failures and stragglers
 - Black-box map/reduce functions → hand optimization
We will focus on the Python dialect, although Spark supports multiple languages
Addressing inefficiencies in Hadoop

• Hadoop: no automatic optimization

☞ Spark
 • Allow program to be a DAG of DB-like operators, with less reliance on black-box code
 • Delay evaluation as much as possible
 • Fuse operators into stages and compile each stage

• Hadoop: too many I/Os
 • E.g., output of each M/R job is always written to disk
 • But such checkpointing simplifies failure recovery

☞ Spark
 • Keep intermediate results in memory
 • Instead of checkpointing, use “lineage” for recovery
RDDs

• Spark stores all intermediate results as **Resilient Distributed Datasets** (RDDs)
 • Immutable, memory-resident, and distributed across multiple nodes
• Spark also tracks the “lineage” of RDDs, i.e., what expressions computed them
 • Can be done at the partition level

What happens to a RDD if a node crashes?

• The partition of this RDD on this node will be lost
• But with lineage, the master simply recomputes the lost partition when needed
 • Requires recursive recomputation if input RDD partitions are also missing
Example: votes & explanations

• Raw data reside in lots of JSON files obtained from ProPublica API
• Each vote: URI (id), question, description, date, time, result
• Each explanation: member id, name, state, party, vote URI, date, text, category
 • E.g., “P000523”, “David E. Price”, “NC”, “D”, “https://api.propublica.org/congress/v1/115/house/sessions/2/votes/269.json”, “2018-06-20”, “Mr. Speaker, due to adverse weather and numerous flight delays and cancellations in North Carolina, I was unable to vote yesterday during Roll Call 269, the motion…”, “Travel difficulties”
Basic M/R with Spark RDD

```python
explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri', 'date', 'text', 'category')

# Map function: map(k1,v1) → list(k2,v2)
def map(record):
    if len(record) == len(explain_fields):
        return [(record[explain_fields.index('category')], 1)]
    else:
        return []

# Reduce function: reduce(k2,list(v2)) → list(v3)
def reduce(record):
    key, vals = record
    return [(key, len(vals))]
```
Basic M/R with Spark RDD

setting up one RDD that contains all the input:
rdd = sc. ...

count number of explanations by category; order by
number (descending) and then category (ascending):
result = rdd
 .flatMap(map)
 .groupByKey()
 .flatMap(reduce)
 .sortBy(lambda x: (-x[1], x[0]))

for row in result.collect():
 print('|'.join(str(field) for field in row))

Be lazy: build up a DAG of “transformations,” but no evaluation yet!

Optimize & evaluate the whole DAG only when needed, e.g., triggered by “actions” like collect()

Be careful: Spark RDDs support map() and reduce() too, but they are not the same as those in MapReduce
Moving “BD” to “DB”

Each element in a RDD is an opaque object—hard to program

• Why don’t we make each element a “row” with named columns—easier to refer to in processing
 • RDD becomes a DataFrame (name from the R language)
 • Still immutable, memory-resident, and distributed

• Then why don’t we have database-like operators instead of just MapReduce?
 • Knowing their semantics allows more optimization

• Spark in fact pushed the idea further
 • Spark Dataset = DataFrame with type-checking
 • And just run SQL over Datasets using SparkSQL!
Spark DataFrame

```python
from pyspark.sql import functions as F

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri', 'date', 'text', 'category')

# setting up a DataFrame of explanations:
df_explain = sc. ...

# count number of explanations by category; order by
# number (descending) and then category (ascending):
df_explain.groupby('category').
    agg(F.count('name')).
    withColumnRenamed('count(name)', 'count').
    .sort(['count', 'category'], ascending=[0, 1]).
    .show(20, truncate=False)
```
from pyspark.sql import functions as F
vote_fields = ('vote_uri', 'question', 'description', 'date', 'time', 'result')
explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri', 'date', 'text', 'category')

setting up DataFrames for each type of data:
df_votes = sc. ...
df_explain = sc. ...

what does the following do? For each vote, find out which legislators provided explanations; order by the number of such legislators (descending), then date and time (descending)
df_votes.join(df_explain.select('vote_api_uri', 'name'),
 df_votes.vote_uri == df_explain.vote_api_uri, 'left_outer')
 .groupBy('vote_uri', 'date', 'time', 'question', 'description', 'result')
 .agg(F.count('name'), F.collect_list('name'))
 .withColumnRenamed('count(name)', 'count')
 .withColumnRenamed('collect_list(name)', 'names')
 .sort([[count', 'date', 'time'], ascending=[0, 0, 0]])
 .select('vote_uri', 'date', 'time', 'question', 'description', 'result',
 'count', 'names')
 .show(20, truncate=False)
Summary

• “DB”: parallel DBMS
 • Standard relational operators
 • Automatic optimization
 • Transactions

• “BD” 10 years go: MapReduce
 • User-defined map and reduce functions
 • Mostly manual optimization
 • No updates/transactions

• “BD” today: Spark
 • Still supporting user-defined functions, but more standard relational operators than older “BD” systems
 • More automatic optimization than older “BD” systems
 • No updates/transactions