Linear Predictors

COMPSCI 371D — Machine Learning
Outline

1. Definitions and Properties
2. The Least-Squares Linear Regressor
3. The Logistic-Regression Classifier
4. Probabilities and the Geometry of Logistic Regression
5. The Logistic Function
6. The Cross-Entropy Loss
7. Multi-Class Linear Predictors
Definitions

• A linear *regressor* fits an affine function to the data
 \[y \approx h(x) = b + w^T x \quad \text{for} \quad x \in \mathbb{R}^d \]
• A linear, binary *classifier* separates the two classes with a hyperplane in \(\mathbb{R}^d \)
• The actual data can be separated only if it is linearly separable (!)
• Multi-class classifiers separate any two classes with a hyperplane
• The resulting decision regions are convex and simply connected
Properties of Linear Predictors

• Linear Predictors...
 • ...have a very small \mathcal{H} with $d + 1$ parameters (resist overfitting)
 • ... are trained by a convex optimization problem (global optimum)
 • ... are fast at inference time (and training is not too slow)
 • ... work well if the data is close to linearly separable
The Least-Squares Linear Regressor

- Déjà vu: Polynomial regression with $k = 1$
 \[y \approx h_v(x) = b + w^T x \text{ for } x \in \mathbb{R}^d \]
- Parameter vector $v = \begin{bmatrix} b \\ w \end{bmatrix} \in \mathbb{R}^{d+1}$
 \[\mathcal{H} = \mathbb{R}^m \text{ with } m = d + 1 \]
- “Least Squares:” $\ell(y, \hat{y}) = (y - \hat{y})^2$
- $\hat{v} = \arg \min_{v \in \mathbb{R}^m} L_T(v)$
- Risk $L_T(v) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, h_v(x_n))$
- We know how to solve this
Linear Regression Example

- Left: All of Ames. Residual $\sqrt{\text{Risk}}$: $55,800$
- Right: One Neighborhood. Residual $\sqrt{\text{Risk}}$: $23,600$
- Left, yellow: Ignore two largest homes
Binary Classification by Logistic Regression

\[Y = \{ c_0, c_1 \} \]

- Multi-class case later
- The logistic-regression classifier is a classifier!
- A linear classifier implemented through regression
- The logistic is a particular function
Score-Based Classifiers

\[Y = \{ c_0, c_1 \} \]

- Think of \(c_0, c_1 \) as numbers: \(Y = \{0, 1\} \)
- We saw the idea of level sets:
 Regress a score function \(s \) such that
 \(s \) is large where \(y = 1 \), small where \(y = 0 \)
- Threshold \(s \) to obtain a classifier:
 \[h(x) = \begin{cases}
 c_0 & \text{if } s(x) \leq \text{threshold} \\
 c_1 & \text{otherwise.}
\end{cases} \]
- A linear classifier implemented through regression
Idea 1

- $s(x) = b + w^T x$

- Not so good!
- A line does not approximate a step well
- Why not fit a step function?
- NP-hard unless the data is separable
Idea 2

- How about a “soft step?”
- The *logistic function*

\[
f(x) \overset{\text{def}}{=} \frac{1}{1 + e^{-x}}
\]

- If a true step moves, the loss does not change until a data point flips label
- If the logistic function moves, the loss changes gradually
- We have a gradient!
- The optimization problem is no longer combinatorial
What is a Logistic Function in d Dimensions?

- We want a *linear* classifier
- The level crossing must be a hyperplane
- Level crossing: Solution to $s(x) = 1/2$
- Shape of the crossing depends on s
- Compose an affine $a(x) = c + u^T x$
 ...with a monotonic $f(a)$ that crosses $1/2$
 $s(x) = f(a(x)) = f(c + u^T x)$
- Then, if $f(\alpha) = 1/2$, the equation $s(x) = 1/2$
 is the same as $c + u^T x = \alpha$
- A hyperplane!
- Let f be the logistic function
Example

- Gold line: Regression problem $\mathbb{R} \rightarrow \mathbb{R}$
- Black line: Classification problem $\mathbb{R}^2 \rightarrow \mathbb{R}$
 (result of running a logistic-regression classifier)
- Labels: Good (red squares, $y = 1$) or poor quality (blue circles, $y = 0$) homes
- All that matters is how far a point is from the black line
A Probabilistic Interpretation

• All that matters is how far a point is from the black line
• \(s(x) = f(\Delta(x)) \) where \(\Delta \) is a signed distance
• We could interpret the score \(s(x) \) as “the probability that \(y = 1: \) \(f(\Delta(x)) = P[y = 1] \)
• (…or as “1 – the probability that \(y = 0 \)”)
 \[
 \lim_{\Delta \to -\infty} P[y = 1] = 0 \quad \lim_{\Delta \to \infty} P[y = 1] = 1 \\
 \Delta = 0 \Rightarrow P[y = 1] = 1/2 \quad \text{(just like the logistic function)}
 \]
Ingredients for the Regression Part

- Determine the distance Δ of a point $\mathbf{x} \in X$ from a hyperplane χ, and the side of χ on which the point is on (Geometry: *affine functions* as unscaled, signed distances)
- Specify a monotonically increasing function that turns Δ into a probability (Choice based on convenience: the *logistic function*)
- Define a loss function $\ell(y, \hat{y})$ such that the minimum risk yields the optimal classifier (Ditto, matches function in previous bullet to obtain a *convex risk*: the *cross-entropy loss*)
Normal to a Hyperplane

- Hyperplane χ: $b + \mathbf{w}^T \mathbf{x} = 0$ (w.l.o.g. $b \leq 0$)
 $\mathbf{a}_1, \mathbf{a}_2 \in \chi \Rightarrow \mathbf{c} = \mathbf{a}_1 - \mathbf{a}_2$ parallel to χ
- Subtract $b + \mathbf{w}^T \mathbf{a}_1 = 0$ from $b + \mathbf{w}^T \mathbf{a}_2 = 0$
- Obtain $\mathbf{w}^T \mathbf{c} = 0$ for any $\mathbf{a}_1, \mathbf{a}_2 \in \chi$
- \mathbf{w} is perpendicular to χ
Distance of a Hyperplane from the Origin

- Unit-norm version of \(\mathbf{w} \): \(\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \)
- Rewrite \(\chi \): \(b + \mathbf{w}^T \mathbf{x} = 0 \) (w.l.o.g. \(b \leq 0 \)) as \(\mathbf{n}^T \mathbf{x} = \beta \) where \(\beta = -\frac{b}{\|\mathbf{w}\|} \geq 0 \)
- Line along \(\mathbf{n} \): \(\mathbf{x} = \alpha \mathbf{n} \) for \(\alpha \in \mathbb{R} \) (parametric form) \(\alpha \) is the distance from the origin
- Replace into eq. for \(\chi \): \(\alpha \mathbf{n}^T \mathbf{n} = \beta \) that is, \(\alpha = \beta \geq 0 \)
- In particular, \(\mathbf{x}_0 = \beta \mathbf{n} \)
- \(\beta \) is the distance of \(\chi \) from the origin
Signed Distance of a Point from a Hyperplane

\[\mathbf{n}^T \mathbf{x} = \beta \] where \(\beta = -\frac{b}{\|\mathbf{w}\|} \geq 0 \) and \(\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \)

\(\mathbf{x}_0 = \beta \mathbf{n} \)

- In one half-space, \(\mathbf{n}^T \mathbf{x} \geq \beta \)
- Distance of \(\mathbf{x} \) from \(\chi \) is \(\mathbf{n}^T \mathbf{x} - \beta \geq 0 \)
- In other half-space, \(\mathbf{n}^T \mathbf{x} \leq \beta \)
- Distance of \(\mathbf{x} \) from \(\chi \) is \(\beta - \mathbf{n}^T \mathbf{x} \geq 0 \)
- On decision boundary, \(\mathbf{n}^T \mathbf{x} = \beta \)
- \(\mathbf{n}^T \mathbf{x} - \beta \) is the signed distance of \(\mathbf{x}_0 \) from the hyperplane
Summary

If \(\mathbf{w} \) is nonzero (which it has to be), the distance of \(\chi \) from the origin is

\[
\beta \overset{\text{def}}{=} \frac{|b|}{\|\mathbf{w}\|}
\]

(a nonnegative number) and the quantity

\[
\Delta(\mathbf{x}) \overset{\text{def}}{=} \frac{b + \mathbf{w}^T\mathbf{x}}{\|\mathbf{w}\|}
\]

is the \textit{signed distance} of point \(\mathbf{x} \in \mathcal{X} \) from hyperplane \(\chi \). Specifically, the distance of \(\mathbf{x} \) from \(\chi \) is \(|\Delta(\mathbf{x})| \), and \(\Delta(\mathbf{x}) \) is nonnegative if and only if \(\mathbf{x} \) is on the side of \(\chi \) pointed to by \(\mathbf{w} \). Let us call that side the \textit{positive half-space} of \(\chi \).
Ingredient 2: The Logistic Function

- Want to make the score of x be only a function of $\Delta(x)$
- Given Δ_0, all points such that $\Delta(x) = \Delta_0$ have the same score
- Score $s(x) = f(\Delta(x))$
- How to pick f?
- $\lim_{\Delta \to -\infty} f(\Delta) = 0$ \hspace{1cm} $f(0) = 1/2$ \hspace{1cm} $\lim_{\Delta \to \infty} f(\Delta) = 1$
- Logistic function: $f(\Delta) \overset{\text{def}}{=} \frac{1}{1+e^{-\Delta}}$
The Logistic Function

• Logistic function: \(f(\Delta) \stackrel{\text{def}}{=} \frac{1}{1+e^{-\Delta}} \)

![Graph of the logistic function]

• Scale-free: Why not \(\frac{1}{1+e^{-\Delta/c}} \) ?

• Can use both \(c \) and \(\Delta(x) \stackrel{\text{def}}{=} \frac{b+w^T x}{\|w\|} \)

... or more simply use no \(c \) but use \(a(x) \stackrel{\text{def}}{=} b + w^T x \)

• The affine function takes care of scale implicitly

• Score: \(s(x) \stackrel{\text{def}}{=} f(a(x)) = \frac{1}{1+e^{-b-w^T x}} \)

• Write \(s(x; b, w) \) to remind us of dependence
Optimize the Regressor, not the Classifier

- We would like something similar to
 \[\ell_{0-1}(y, \hat{y}) = \begin{cases}
 0 & \text{if } y = \hat{y} \\
 1 & \text{otherwise}
\end{cases} \]
- However, \(\ell_{0-1} \) is not differentiable
- Use the score \(p = s(x; b, w) \) instead of \(\hat{y} \):
 - \(\hat{y} \in \{0, 1\} \) while \(p \in [0, 1] \)
 - Instead of measuring the loss on \(\hat{y} = h(x) \), we measure it on \(p = s(x; b, w) \approx \hat{y} \)
- We still need a different \(\ell(y, p) \) for differentiability
The Cross-Entropy Loss

Differentiability, Again

• We want $\ell(y, p)$ to be differentiable in p
• Since p is differentiable in $v = (b, w)$, so then will be ℓ
• Why do we insist on differentiability, again?
• Risk: $L_T(b, w) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, s(x_n ; b, w))$
• Use a gradient method (steepest descent, Newton, ...)
• We have not yet chosen the specific form of ℓ
• We can make $L_T(b, w)$ a differentiable and convex function of $v = (b, w)$ by a suitable choice of ℓ
The Cross-Entropy Loss

\[\ell(y, p) \overset{\text{def}}{=} \begin{cases} - \log p & \text{if } y = 1 \\ - \log(1 - p) & \text{if } y = 0 \end{cases} \]

- Base of log is unimportant: unit of loss is conventional

- Same as \(\ell(y, p) = -y \log p - (1 - y) \log(1 - p) \)
 (Second is more convenient for differentiation)
The Cross-Entropy Loss

- Domain: \(\{0, 1\} \times [0, 1] \)
 \[\ell(1, p) = \ell(0, 1 - p) \]
 \[\ell(1, 1/2) = \ell(0, 1/2) = -\log(1/2) \]
Why Cross-Entropy?

- Literature (and Appendix in the class notes) gives an interpretation in terms of information theory
- A more cogent explanation: With cross-entropy and the logistic function,
 - *The risk becomes a convex function of the parameters* \(\mathbf{v} = (b, \mathbf{w}) \)
 - The gradient and Hessian of the risk are easy to compute
- A crucial cancellation occurs when computing derivatives of the risk with respect to the parameters
- You *will* be asked to *use* gradient and Hessian, and be able to compute them
- You will *not* be asked to *remember* their formulas, or know how to derive them
The Magic

• Logistic function and loss were chosen to simplify the math
• Here is the magic:

\[L_T(v) = L_T(\ell(s(a(v))), \text{ so } \nabla L_T = \frac{dL_T}{d\ell} \frac{d\ell}{ds} \frac{ds}{da} \nabla a \]

\[\ell = -y \log s - (1 - y) \log(1 - s) \text{ so that } \frac{d\ell}{ds} = \frac{s - y}{s(1 - s)} \]

\[s(a) = \frac{1}{1 + e^{-a}} \text{ so that } \frac{ds}{da} = s(1 - s) \]

• Therefore, \[\frac{d\ell}{ds} \frac{ds}{da} = s - y \]
• This is the cancellation that simplifies everything
Turning the Crank

• Gradient of the risk:

\[\nabla L_T(v) = \frac{1}{N} \sum_{n=1}^{N} [s(x_n ; v) - y_n] \left[\begin{array}{c} 1 \\ x_n \end{array} \right] \]

• Hessian of the risk:

\[H_{L_T}(v) = \frac{1}{N} \sum_{n=1}^{N} s(x_n ; v) [1 - s(x_n ; v)] \left[\begin{array}{cc} 1 \\ x_n \end{array} \right] \left[\begin{array}{c} 1 \\ x_n \end{array} \right] \]

• Each term in the summation for \(H_{L_T} \) is an outer product
• This implies (easily) that \(H_{L_T} \) is positive semidefinite
• \(L_T(v) \) is a convex function
• No need to check eigenvalues (See Appendix if you are curious)
Training

• $L_T(v)$ is convex in $v \in \mathbb{R}^m$ with $m = d + 1$
• Use any gradient-based method to minimize
• When d is not too large, use Newton’s method (homework!)
• More efficient, problem-specific algorithms exist
• They capitalize on $L_T(v)$ being a sum of squares
• Typically, train with cross-entropy loss, test with 0-1 loss
Multi-Class Linear Predictors

- Obvious approach 1: One-versus-rest
- Build \(K - 1 \) classifiers \(c_k \) versus not \(c_k \)
- Works for \(K = 2 \) but not for \(K = 3 \)

\[
\begin{align*}
 c_1 & \quad \text{not } c_1 \\
 \text{not } c_1 & \quad c_2 \\
 \text{not } c_2 & \quad \text{not } c_2
\end{align*}
\]
Multi-Class Linear Predictors

- Obvious approach 2: One-versus-one
- Build $\binom{K}{2}$ classifiers c_i versus c_j
- Works for $K = 2$ but not for $K = 3$
A Symmetric View of the Binary Score

- Rename classes 1, 2 rather than 0, 1
- Activation: \(a = b + w^T x \)
- Score for class 1: \(s_1(a) = \frac{1}{1 + e^{-a}} \)
- Score for class 2: \(s_2(a) = 1 - s_1(a) = s_1(-a) \)
- More symmetrically, two activations:
 \(a_1 = b + w^T x, \ a_2 = -b - w^T x \)
 \(\text{Note: } \frac{1}{1 + e^{-a}} = \frac{e^a}{e^a + 1} = \frac{e^a}{e^a + e^{-a/2}} \)
 \(s_1 = s(a_1) = \frac{e^{a_1/2}}{e^{a_1/2} + e^{-a_1/2}} = \frac{e^{a_1/2}}{e^{a_2/2} + e^{a_1/2}} \)
 \(s_2 = s(a_2) = \frac{e^{a_2/2}}{e^{a_1/2} + e^{a_2/2}} \)
 Class with highest score wins
Exploiting Scalable Activations

• Score for class \(k \in \{1, 2\} \): \(s_k = \frac{e^{a_k}}{e^{a_1} + e^{a_2}} \)

• Activations are freely scalable, so write \(s_k = \frac{e^{a_k}}{e^{a_1} + e^{a_2}} \) instead

• Different function, same separating hyperplane

• This generalizes. Replace 2 classes with \(K \)

\[
s_k(x) = \frac{e^{a_k(x)}}{\sum_{j=1}^{K} e^{a_j(x)}} \text{ where } a_k(x) = b_k + w_k^T x
\]

• Satisfies \(\sum_{j=1}^{K} s_k(x) = 1 \)

• Class with highest score wins: \(\hat{y} = h(x) \in \arg \max_k s_k(x) \)

• This is the Linear-Regression Multi-Class Classifier
The Soft-Max Function

\[s_k(x) = \frac{e^{a_k(x)}}{\sum_{j=1}^{K} e^{a_j(x)}} \]

- \(s_k(x) > 0 \) and \(\sum_{k=1}^{K} s_k(x) = 1 \) for all \(x \)
- If \(a_i \gg a_j \) for \(j \neq i \) then \(\sum_{j=1}^{K} e^{a_j(x)} \approx e^{a_i(x)} \)
- Therefore, \(s_i \approx 1 \) and \(s_j \approx 0 \) for \(j \neq i \)
- “Brings out the biggest:” soft-max
- Collect into vectors: \(\mathbf{a} = (a_1, \ldots, a_K) \), \(\mathbf{s} = (s_1, \ldots, s_K) \)

\[\mathbf{x} \in \mathbb{R}^d \rightarrow \mathbf{a} \in \mathbb{R}^K \rightarrow \mathbf{s} \in \mathbb{R}^K \]

\[\mathbf{s}(\mathbf{a}(\mathbf{x})) = \frac{e^{\mathbf{a}(\mathbf{x})}}{\mathbf{1}^T e^{\mathbf{a}(\mathbf{x})}} \]

\[\lim_{\alpha \to \infty} \mathbf{a}^T \mathbf{s}(\alpha \mathbf{a}) = \max(\mathbf{a}) \]
Geometry of Multi-Class Decision Regions

- Separating hyperplane for classes \(i, j \in \{1, \ldots, K\} \):
 \[b_i + \mathbf{w}_i^T \mathbf{x} = b_j + \mathbf{w}_j^T \mathbf{x} \] (equal activations \(\Rightarrow \) equal scores)
- Total of \(M = \binom{K}{2} \) hyperplanes, just as in one-vs-one
- Example: \(d = 2, K = 4 \Rightarrow 6 \) lines on the plane
- There are degeneracies (\(M \times (d + 1) \) matrix of rank \(K - 1 \))
- Crossing a line switches two scores. Example:
 \[s_3 > s_2 > s_4 > s_1 \quad \rightarrow \quad s_3 > s_4 > s_2 > s_1 \]
Geometry of Decision Regions

- Crossing a line switches two scores. Example:
 \[s_3 > s_2 > s_4 > s_1 \rightarrow s_3 > s_4 > s_2 > s_1 \]
- When the *top two* scores switch, we cross a decision boundary. Example:
 \[s_3 > s_2 > s_4 > s_1 \rightarrow s_2 > s_3 > s_4 > s_1 \]
- Decision regions are intersections of half-spaces \(\Rightarrow \) convex
Multi-Class Cross-Entropy Loss

• Cross-entropy loss for $K = 2$: (remember that we renamed $Y = \{0, 1\}$ to $Y = \{1, 2\}$)

$$
\ell(y, p) \overset{\text{def}}{=} \begin{cases}
- \log p & \text{if } y = 1 \\
- \log(1 - p) & \text{if } y = 2
\end{cases} = \begin{cases}
- \log p_1 & \text{if } y = 1 \\
- \log p_2 & \text{if } y = 2
\end{cases}
$$

• Same as $\ell(y, p) = - \log p_y$
• But this is general!
• Can also write as follows: $\ell(y, p) = - \sum_{k=1}^{K} q_k(y) \log p_k$
• q is the one-hot encoding of y
• Example: $K = 5$, then $y = 4$ is represented by $q = [0, 0, 0, 1, 0]$
Convex Risk, Again

• Even with $K > 2$, the risk is a convex function of $\mathbf{v} = (b_1, \mathbf{w}_1, \ldots, b_K, \mathbf{w}_K) \in \mathbb{R}^m$ with $m = (d + 1)K$
• Proof analogous to $K = 2$ case, just technically more involved
• Can still use gradient descent methods, including Newton