Due date: November 25, 2019

Problem 1: Consider the following modification of Karger’s algorithm for finding a minimum \(s-t \) cut in an unweighted, undirected graph. In a given iteration, let \(s \) and \(t \) denote the possibly contracted vertices that contain the original vertices \(s \) and \(t \), respectively. Select an edge that does not connect \(s \) and \(t \) uniformly at random, and contract it. Continue until there are only two vertices remaining, these must be \(s \) and \(t \). Output the corresponding \(s-t \) cut. Give an example to show that the probability this algorithm finds a minimum \(s-t \) cut can be exponentially small.

Problem 2: Let \(S = \{ p_1, \ldots, p_n \} \subset [\Delta]^2 \) be a set of \(n \) points that lie on the 2-dimensional grid where \(\Delta = O(n) \). Pick uniformly at random \(b \in [\Delta]^2 \). Consider the randomly shifted quadtree \(T \) for \(S \) having \(R_{\text{root}} = b + [-\Delta, \Delta]^2 \) as the root cell. Let \(R_v \) be the square associated with node \(v \), and let \(l_v \) be the side length of \(R_v \). Let the weight of each edge be the side length of the lower square, i.e. \(w(v, \text{parent}(v)) = l_v \). For a pair \(p, q \in S \), let \(\pi(p, q) \) be the path in \(T \) between the leaves containing \(p \) and \(q \). The distance of \(p, q \) in the quadtree is \(d_T(p, q) = \sum_{e \in \pi(p, q)} w_e \). Show that \(E[d_T(p, q)] = O(\log n) \left\| p - q \right\| \).

(Hint: What is the probability that \(\text{lca}(p, q) \) is at depth \(i \)?)

Problem 3:
(i) Let \(T = (V, E) \) be a rooted tree with edge-weight function \(w : E \to \mathbb{R}^+ \). Let \(R \) and \(B \) be two point sets stored at the vertices of \(T \), where \(|R| = |B| = n \). That is, \(R \) (resp. \(B \)) can be regarded as a function \(R : [1, \ldots, n] \to V \) (resp. \(B : [1, \ldots, n] \to V \)). The distance \(d(r, b) \) is the weight of the path in \(T \) between the vertices storing \(r \) and \(b \). Show that a minimum-weight perfect matching between \(R \) and \(B \) can be computed in \(O(n) \) time.

(ii) Let \(R, B \subset [\Delta]^2 \) be two point sets such that \(|R| = |B| = n \) and \(\Delta = O(n) \). Describe an \(O(n \log n) \) time algorithm to compute a perfect matching between \(R \) and \(B \) whose expected cost is \(O(\log n) \) times that of the Euclidean minimum-weight perfect matching, i.e., the minimum-weight perfect matching in the complete graph \(G = (R \cup B, R \times B) \) with \(w(r, b) = \| r - b \| \).

(Hint: Use Problem 2 and part (i).)

Problem 4: Let \(S = \{ p_1, \ldots, p_n \} \subset \mathbb{R}^2 \) and \(\varepsilon > 0 \). A \(\varepsilon \)-spanner of \(S \) is a weighted graph \(G \) whose vertices are the points of \(S \), and for any \(p, q \in S \) we have:

\[
\| p - q \| \leq d_G(p, q) \leq (1 + \varepsilon) \| p - q \| ,
\]

where \(d_G(p, q) \) denotes the shortest-path distance between \(p \) and \(q \) in \(G \). Consider the following construction: first build a quadtree \(T \) for \(S \). For every node \(v \), choose an arbitrary point in the square \(R_v \) and denote it \(\text{rep}_v \). Also let \(l_v \) be the side length of \(R_v \). Let \(\delta = \varepsilon / c \) for some constant \(c \geq 16 \). For each node \(v \in T \), let \(w \) be a node in \(T \) at the same level as \(v \) such that the distances of their centers is at most \(l_v / \delta \). We add \((\text{rep}_v, \text{rep}_w) \) as an edge to \(G \) with weight \(\| \text{rep}_v - \text{rep}_w \| \). Prove that \(G \) is an \(\varepsilon \)-spanner of \(S \).

(Hint: Use induction on the \(\binom{n}{2} \) distances of \(S \)).

Problem 5: Suppose we are getting a stream of real values. Let \(S \) be the set of items seen so far, and let \(\varepsilon > 0 \) be a parameter. Describe a sketch of size \(O(\frac{1}{\varepsilon} \log n) \) so that for a query \(x \in \mathbb{R} \), its rank in \(S \) can be estimated with additive error at most \(\varepsilon n \). You can assume that you know the maximum value of \(n \). (Hint: Store a subset of values.)