Regression

CPS 570
Ron Parr
Department of Computer Science
Duke University

Regression figures provided by Christopher Bishop and © 2007 Christopher Bishop
Some content adapted from Lise Getoor, Tom Dietterich, Andrew Moore & Rich Maclin

Supervised Learning

• Given: Training Set
• Goal: Good performance on test set

• Assumptions:
 – Training samples are independently drawn, and identically distributed (IID)
 – Test set is from same distribution as training set
Fitting Continuous Data
(Regression)

• Datum i has feature vector: \(\phi = (\phi_1(x^{(i)}), \ldots, \phi_k(x^{(i)})) \)
• Has real valued target: \(t^{(i)} \)
• Concept space: linear combinations of features:
 \[
 y(x^{(i)}; w) = \sum_{j=1}^{k} \phi_j(x^{(i)}) w_j = \phi(x^{(i)}) w = \phi^{(i)} w
 \]
• Learning objective: Search to find “best” \(w \)
• (This is standard “data fitting” that most people learn in some form or another.)

Linearity of Regression

• Regression typically considered a linear method, but...
• Features not necessarily linear
 • and, BTW, features not necessarily linear
Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy increase from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.
- Fitting polynomials
 - Features are monomials

Features/Basis Functions

- Polynomials
- Indicators
- Gaussian densities
- Step functions or sigmoids
- Sinusoids (Fourier basis)
- Wavelets
- Anything you can imagine...
What is “best”?

• No obvious answer to this question
• Three compatible answers:
 – Minimize squared error on training set
 – Maximize likelihood of the data
 (under certain assumptions)
 – Project data into “closest” approximation
• Other answers possible
Minimizing Squared Training Set Error

- Why is this good?
- How could this be bad?
- Minimize:

\[E(w) = \sum_{i=1}^{N} (\phi(x^{(i)})w - t^{(i)})^2 \]
Maximizing Likelihood of Data

- Assume:
 - True model is in H
 - Data have Gaussian noise
- Actually might want:
 \[
 \arg \max_H P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}
 \]
- Is maximizing \(P(X \mid H)\) a good surrogate? (maximizing over \(w\))

Maximizing \(P(X \mid H)\)

- Assume: \(t^{(i)} = y^{(i)} + \epsilon^{(i)}\)
- Where: \(P(\epsilon^{(i)}) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)\)
 (Gaussian distribution w/mean 0, standard deviation \(\sigma\))
- Therefore:
 \[
 P(t^{(i)} \mid x^{(i)}, w) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \varphi(x^{(i)})w)^2}{2\sigma^2}\right)
 \]
Maximization Continued

• Maximizing over entire data set:

\[
\prod_{i=1}^{n} P(t^{(i)} | \phi^{(i)}, \theta) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t^{(i)} - \phi^{(i)}w)^2}{2\sigma^2}\right)
\]

• Maximizing equivalent log formulation: (ignoring constants)

\[
\sum_{i=1}^{n} -(t^{(i)} - \phi^{(i)}w)^2
\]

• Or minimizing:

\[
E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2
\]

Look familiar?

Checkpoint

• So far we have considered:
 – Minimizing squared error on training set
 – Maximizing Likelihood of training set (given model, and some assumptions)

• Different approaches w/same objective!
Solving the Optimization Problem

- Nota bene: Good to keep optimization problem and optimization technique separate in your mind

- Some optimization approaches:
 - Gradient descent
 - Direct Minimization

Minimizing E by Gradient Descent

Start with initial weight vector w_0

Compute the gradient

\[
\nabla E = \left(\frac{\partial E(w)}{\partial w_1}, \frac{\partial E(w)}{\partial w_2}, \ldots, \frac{\partial E(w)}{\partial w_n} \right)
\]

Compute

\[
w \leftarrow w - \alpha \nabla E
\]

where α is the step size

Repeat until convergence

(Adapted from Lise Getoor’s Slides)
Gradient Descent Issues

• For this particular problem:
 – No local optima
 – Convergence “guaranteed” if done in “batch”

• In general
 – Local optimum only (local=global for lin. regression)
 – Batch mode more stable
 – Incremental possible
 • Can oscillate
 • Use decreasing step size (Robbins-Monro) to stabilize

Solving the Minimization Directly

\[E = \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)^2 \]
\[\nabla_w E \propto \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)\phi^{(i)} \]

Set gradient to 0 to find min:

\[\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)}w)\phi^{(i)} = 0 \]
\[\sum_{i=1}^{n} t^{(i)}\phi^{(i)} - \sum_{i=1}^{n} \phi^{(i)}\phi^{(i)} = 0 \]
\[t^T\Phi - w^T\Phi^T\Phi = 0 \rightarrow \Phi^Tt - \Phi^T\Phi w = 0 \]
\[w = (\Phi^T\Phi)^{-1}\Phi^T(t) \]

\[\Phi = \begin{bmatrix} \phi(x^{(1)}) \\ \phi(x^{(2)}) \\ \vdots \\ \phi(x^{(n)}) \end{bmatrix} \]
Geometric Interpretation

- $t = (t^{(1)} \ldots t^{(n)})$ = point in n-space
- Ranging over w, $\Phi w = H =$
 - column space of features
 - subspace of \mathbb{R}^n occupied by H
- Goal: Find “closest” point in H to t

- Suppose closeness = Euclidean distance

Another Geometric Interpretation

(Shaded region represents t space, dotted lines represent H space (linear combinations of Φ), and dashed line represents the orthogonal projection minimizing Euclidean distance.)
Minimizing Euclidean Distance

- Minimize: \(|\mathbf{t} - \Phi \mathbf{w}|_2 \)
- For \(n \) data points:
 \[
 \sqrt{\sum_{i=1}^{n} (t^{(i)} - \phi^{(i)} \mathbf{w})^2}
 \]
- Equivalent to minimizing:
 \[
 \sum_{i=1}^{n} (t^{(i)} - \phi^{(i)} \mathbf{w})^2
 \]
 Look familiar?

Checkpoint

- Three different ways to pick \(\mathbf{w} \) in \(H \)
 - Minimize squared error on training set
 - Maximize likelihood of training set
 - Distance minimizing projection into \(H \)

- All lead to same optimization problem!
 \[
 \arg\min_{\mathbf{w}} E(\mathbf{w}) = \sum_{i=1}^{N} (\phi^{(i)} \mathbf{w} - t^{(i)})^2
 \]
Geometric Solution

• Geometric Approach (Strang)
• Let Φ be the feature (design) matrix
• Require orthogonality:

$$\forall z : (\Phi z)^T (\Phi w - t) = 0$$

Any vector in H

Line from t to solution

$$\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0$$

Direct Solution Continued

• When is this true: $\forall z : z^T [\Phi^T \Phi w - \Phi^T t] = 0$
• When:

$$\Phi^T \Phi w - \Phi^T t = 0$$

$$w = (\Phi^T \Phi)^{-1} \Phi^T t$$

Same solution as direct minimization of error

When does the inverse exist?
Hidden Assumption

- Many of our solution methods require that our features (columns of Φ) that are linearly independent
- What if they aren’t?
 - Solution isn’t unique
 - Can use pseudoinverse (pinv in matlab)
 - Finds solution with minimum 2-norm

What if $t^{(i)}$ is a vector?

- Nothing changes!
- Scalar prediction:
 \[w = (\Phi^T \Phi)^{-1} \Phi^T t \]
- Vector prediction (exercise):
 \[w = (\Phi^T \Phi)^{-1} \Phi^T T \]
Checkpoint

• What we have shown:
 – Three different ways of viewing regression as an optimization problem
 – All three lead to the same solution

• What we have not shown
 – How to pick features
 – Whether these views are the “right” objective function

What about other criteria?

• Minimizing worse case (L_∞) loss?

\[
\min_w \max_i \left(\phi^{(i)} w - t^{(i)} \right)
\]

• Solve by linear program...
What is the Best Choice of Features?

Noisy Source Data

Degree 0 Fit

\(M = 0 \)
Degree 1 Fit

Degree 3 Fit
Observations

- Degree 3 is the best match to the source
- Degree 9 is the best match to the samples
- Performance on test data:
Understanding Loss

- Suppose we have a squared error loss function: \(L \) (gets too confusing to use \(E \))
- Define \(h(x) = E[t|x] \) (true hypothesis w/noise averaged out)
- \(y(x) \) = our learned hypothesis

\[
E[L] = \int \{ y(x) - h(x) \}^2 p(x) dx + \int \{ h(x) - t \}^2 p(x,t) dx dt
\]

Mismatch between hypothesis and target – we can influence this
Noise in distribution of targets (nothing we can do)

Bias and Variance

\[
E[L] = \int \{ y(x) - h(x) \}^2 p(x) dx + \int \{ h(x) - t \}^2 p(x,t) dx dt
\]

Since \(y(x) \) is fit to data, consider expectation over different draws of a fixed size data set for the part we control

\[
E_D \left[\{ y(x;D) - h(x) \}^2 \right] = \left[E_D \left[y(x;D) - h(x) \right] \right]^2 + E_D \left[\{ y(x;D) - E_D \left[y(x;D) \right] \}^2 \right]
\]

bias variance
Understanding Bias

\[\{E_D[y(x; D) - h(x)]\}^2 \]

- Measures how well our approximation architecture can fit the data
- Weak approximators (e.g. low degree polynomials) will have high bias
- Strong approximators (e.g. high degree polynomials, will have lower bias)

Understanding Variance

\[E_D[\{y(x; D) - E_D[y(x; D)]\}^2] \]

- No direct dependence on target values
- For a fixed size D:
 - Strong approximators will tend to have more variance
 - Weak approximators will tend to have less variance
- Variance will typically disappear as size of D goes to infinity
Example: 20 points
\[y = x + 2 \sin(1.5x) + N(0,0.2) \]

Hypothesis space = linear in x

50 fits (20 examples each)
Bias

Variance
Trade off Between Bias and Variance

- Is the problem a bad choice of polynomial?
- Is the problem that we don’t have enough data?
- Answer: Yes
- Lower bias -> Higher Variance
- Higher bias -> Lower Variance
Bias and Variance: Lessons Learned

• When data are scarce relative to the “capacity” of our hypothesis space
 – Variance can be a problem
 – Restricting hypothesis space can reduce variance at cost of increased bias

• When data are plentiful
 – Variance is less of a concern
 – May afford to use richer hypothesis space

Concluding Comments

• Regression is the most basic machine learning algorithm
• Multiple views are all equivalent:
 – Minimize squared loss
 – Maximize likelihood
 – Orthogonal projection
• Big question: Choosing features
• First steps towards understanding this:
 Bias and variance trade off