Relational Database Design using E/R

Introduction to Databases
CompSci 316 Fall 2020
Announcements (Thu. Aug. 27)

• Reminder: HW1 due Tuesday, 9/1, 11:59 pm

• Project team formation: by Tuesday 9/8
 • Read the pdf on project details and choose fixed/open
 • See the email sent on sakai and piazza for shared google spreadsheet
 • If you have formed a group – add it to the spreadsheet
 • If you are looking for members – add your project to the spreadsheet
 • Each project team should have 5 members
 • By default, all group members from the same discussions
 • Need help? Reach out to Yesenia and Sudeepa

• Anonymous feedback form posted on Piazza
 • If you would like us to repeat a concept next week in discussions/lectures, please write it there and submit
 • Any comments/feedback/difficulties: let us know!
Where are we now?

Relational model and queries
- Relational Model
- Query in SQL
- Query in RA

Database Design
- E/R diagram (design from scratch)
- Normal Forms (refine design)

Beyond Relational Model
- XML
- NOSQL JSON/MongoDB

DBMS Internals and Query Processing
- Storage
- Index
- Join algo/Sorting
- Execution/Optimization

Transactions
- Basics
- Concurrency Control
- Recovery

(Basic) Big Data Processing
- Map-Reduce
- Parallel DBMS

Covered
- Next

To be covered
Relational model: review

- A database is a collection of relations (or tables)
- Each relation has a set of attributes (or columns)
- Each attribute has a name and a domain (or type)
- Each relation contains a set of tuples (or rows)

How do we know which relations and attributes to have?
Example: Users, Groups, Members

Users
Each has uid (unique id), name, age, pop (popularity)

Groups
Each has gid (unique id), name

Member
Records fromDate
(when a user joined a group)
Keys

• A set of attributes K is a key for a relation R if
 • In no instance of R will two different tuples agree on all attributes of K
 • That is, K can serve as a “tuple identifier”
 • No proper subset of K satisfies the above condition
 • That is, K is minimal

• Example: $User\ (uid, name, age, pop)$
 • uid is a key of $User$
 • age is not a key (not an identifier)
 • $\{uid, name\}$ is not a key (not minimal)
Schema vs. instance

• Is name a key of User?

• Key declarations are part of the schema

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>
More examples of keys

• *Member* (*uid*, *gid*)

• *Address* (*street_address*, *city*, *state*, *zip*)
Use of keys

• More constraints on data, fewer mistakes
• Look up a row by its key value
 • Many selection conditions are “key = value”
• “Pointers” to other rows (often across tables)
 • Example: Member (uid, gid)
 • uid is a key of User
 • gid is a key of Group
 • A Member row “links” a User row with a Group row
 • Many join conditions are “key = key value stored in another table”
Database design

• Understand the real-world domain being modeled
• Specify it using a database design model
 • More intuitive and convenient for schema design
 • But not necessarily implemented by DBMS
 • We will cover
 • Entity/Relationship (E/R) model
• Then
 1. Translate specification to the data model of DBMS
 • Relational, XML, object-oriented, etc.
 2. Create DBMS schema
Entity-relationship (E/R) model

• Historically and still very popular

• Designs represented by E/R diagrams
 • We use the style of E/R diagram covered by the GMUW book; there are other styles/extensions
Example: Users, Groups, Members

Users
Each has uid (unique id), name, age, pop (popularity)

Groups
Each has gid (unique id), name

Member
Records fromDate (when a user joined a group)
E/R basics

• **Entity**: a “thing,” like an object
• **Entity set**: a collection of things of the same type, like a relation of tuples or a class of objects
 • Represented as a rectangle
• **Relationship**: an association among entities
• **Relationship set**: a set of relationships of the same type (among same entity sets)
 • Represented as a diamond
• **Attributes**: properties of entities or relationships, like attributes of tuples or objects
 • Represented as ovals
An example E/R diagram

- Users are members of groups

- A **key** of an entity set is represented by underlining all attributes in the key
 - A key is a set of attributes whose values can belong to at most one entity in an entity set—like a key of a relation
Attributes of relationships

• Example: a user belongs to a group since a particular date

• Where do the dates go?
 • With Users?
 • With Groups?
E/R diagram for Beers Database?

Drinkers **Frequent** Bars “X” times a week

Bars **Serve** Beers At price “Y”

Bars Each has an address

Beers Each has a brewer

Drinkers **Likes** Beers

Drinkers Each has an address

Keys?
More on relationships

• There could be multiple relationship sets between the same entity sets
 • Example: *Users IsMemberOf Groups; Users Likes Groups*

• In a relationship set, each relationship is uniquely identified by the entities it connects
 • Example: *Between Bart and “Dead Putting Society”, there can be at most one IsMemberOf relationship and at most one Likes relationship*

☞ What if Bart joins DPS, leaves, and rejoins? How can we modify the design to capture historical membership information?
Multiplicity of relationships

- \(E \) and \(F \): entity sets
- **Many-many**: Each entity in \(E \) is related to 0 or more entities in \(F \) and vice versa
 - Example:

- **Many-one**: Each entity in \(E \) is related to 0 or 1 entity in \(F \), but each entity in \(F \) is related to 0 or more in \(E \)
 - Example:

- **One-one**: Each entity in \(E \) is related to 0 or 1 entity in \(F \) and vice versa
 - Example:

- “One” (0 or 1) is represented by an arrow
- “Exactly one” is represented by a rounded arrow
Roles in relationships

• How do we model “Friendship” among Users?
• An entity set may participate more than once in a relationship set
 ✏ May need to label edges to distinguish roles
• Examples
 • Users may be parents of others; label needed
 • Users may be friends of each other; label not needed

![Diagram showing relationships between Users, parent-child, and friendship connections]
\(n \)-ary relationships

• Example: a user must have an initiator in order to join a group

![Diagram](image.png)

Rule for interpreting an arrow into entity set \(E \) in an \(n \)-ary relationship:

• Pick one entity from each of the other entity sets; together they can be related to at most one entity in \(E \)

• Exercise: hypothetically, what do these arrows imply?
n-ary versus binary relationships

• Can we model \(n \)-ary relationships using just binary relationships?

![Diagram of n-ary and binary relationships]

Are they equivalent?

WRONG!
Next: two special relationships

... is part of/belongs to ...

... is a kind of ...

http://blogs.library.duke.edu/renovation/files/2012/08/Rubenstein-Library-First-Floor-Floorplan.jpg
http://www.sharky-jones.com/Sharkyjones/Artwork/taxonomy%20artwork/Class1.jpg
Weak entity sets

Sometimes, an entity’s identity depends on some others’

- Can you come to my OH in 325?
- Sorry 325 in..?
- D wing
- LSRC
- D-wing of...?
- Got it
Weak entity sets

Sometimes, an entity’s identity depends on some others’

- The key of a weak entity set E comes not completely from its own attributes, but from the keys of one or more other entity sets
 - E must link to them via many-one or one-one relationship sets
- Example: Rooms inside Buildings are partly identified by Buildings’ name
- A weak entity set is drawn as a double rectangle
- The relationship sets through which it obtains its key are called supporting relationship sets, drawn as double diamonds
Weak entity set examples

• Seats in rooms in building

• Why must double diamonds be many-one/one-one-one?
Remodeling n-ary relationships

- An n-ary relationship set can be replaced by a weak entity set (called a connecting entity set) and n binary relationship sets

Are they equivalent now?
ISA relationships

• Similar to the idea of subclasses in object-oriented programming: subclass = special case, fewer entities, and possibly more properties
 • Represented as a triangle (direction is important)
• Example: paid users are users, but they also get avatars (yay!)

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

uid
ame
gid
name

\[\text{Users} \triangleleft \text{IsMemberOf} \rightarrow \text{Groups}\]

\[\text{PaidUsers} \triangleleft \text{ISA} \rightarrow \text{Users}\]

Automatically “inherits” key, attributes, relationships
Summary of E/R concepts

• Entity sets
 • Keys
 • Weak entity sets

• Relationship sets
 • Attributes of relationships
 • Multiplicity
 • Roles
 • Binary versus n-ary relationships
 • Modeling n-ary relationships with weak entity sets and binary relationships
 • ISA relationships
Case study 1

• Design a database representing cities, counties, and states
 • For states, record name and capital (city)
 • For counties, record name, area, and location (state)
 • For cities, record name, population, and location (county and state)

• Assume the following:
 • Names of states are unique
 • Names of counties are only unique within a state
 • Names of cities are only unique within a county
 • A city is always located in a single county
 • A county is always located in a single state
Case study 1: first design
Case study 1: second design
Case study 2

• Design a database consistent with the following:
 • A station has a unique name and an address, and is either an express station or a local station
 • A train has a unique number and an engineer, and is either an express train or a local train
 • A local train can stop at any station
 • An express train only stops at express stations
 • A train can stop at a station for any number of times during a day
 • Train schedules are the same everyday
Case study 2

• Design a database consistent with the following:
 • A station has a unique name and an address, and is either an express station or a local station
 • A train has a unique number and an engineer, and is either an express train or a local train
 • A local train can stop at any station
 • An express train only stops at express stations
 • A train can stop at a station for any number of times during a day
 • Train schedules are the same everyday
Case study 2: first design
Case study 2: second design