External Sorting and Join Algorithms

Introduction to Databases
CompSci 316 Fall 2020
Announcements (Thu. Oct 8)

• HW-5 + Gradiance-3 (Constraints/Triggers)
 • Due now Monday 10/12 -- extended

• Keep working on your project!
 • MS-2 due next week (10/15)
 • Need to submit a basic working version of your website (all functionalities not needed, but interactions from/to UI and databases should be there) + other things

• Will focus on projects in the discussion session on Monday

• Midterm survey due Tue 10/13
Notation

• Relations: R, S
• Tuples: r, s
• Number of tuples: $|R|, |S|$
• Number of disk blocks: $B(R), B(S)$
• Number of memory blocks available: M
• Cost metric
 • Number of I/O’s
 • Memory requirement

Recall our disk-memory diagram
On board!
Scanning-based algorithms
Table scan

• Scan table \(R \) and process the query
 • Selection over \(R \)
 • Projection of \(R \) without duplicate elimination

• I/O’s: \(B(R) \)
 • Trick for selection: stop early if it is a lookup by key

• Memory requirement: 2

• Not counting the cost of writing the result out
 • Same for any algorithm!
 • Maybe not needed—results may be pipelined into another operator
Announcements (Tue. Oct 13)

• Keep working on your project!
 • MS-2 due next Monday (10/19)
 • Need to submit a basic working version of your website (all functionalities not needed, but interactions from/to UI and databases should be there) + other things

• Midterm survey due today Tue 10/13

• HW6 to be posted today, due next Thursday
• How do we implement Join?

• Cost?
 • (page I/O -- in terms of B(R), |R| etc.)

• Memory requirement?
Nested-loop join

\(R \bowtie_p S \)

- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
- \(R \) is called the outer table; \(S \) is called the inner table
- I/O’s: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: 3

Improvement: block-based nested-loop join
Block-based Nested Loop Join

- $R \bowtie_{p} S$
- R outer, S inner
- For each block of R, for each block of S:
 - For each r in the R block, for each s in the S block: ...
 - I/O's: $B(R) + B(R) \cdot B(S)$
 - Memory requirement: same as before
More improvements

• Make use of available memory
 • Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory

• I/O’s: \(B(R) + \left\lceil \frac{B(R)}{M-2} \right\rceil \cdot B(S) \)
 • Or, roughly: \(B(R) \cdot B(S)/M \)

• Memory requirement: \(M \) (as much as possible)

• Which table would you pick as the outer?
Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

To Understand:

What is a run?
What is a level and a pass?

Reminder: How 2-way merge sort works?
How to extend to multi-way merge sort?
External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

- **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run

- **Pass 1**: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run

- **Pass 2**: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run

...

- **Final pass** produces one sorted run
Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
 • 1, 7, 4 → 1, 4, 7
 • 5, 2, 8 → 2, 5, 8
 • 9, 6, 3 → 3, 6, 9
• Pass 1
 • 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 • 3, 6, 9
• Pass 2 (final)
 • 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9
Analysis

• **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run
 • There are $\left\lceil \frac{B(R)}{M} \right\rceil$ level-0 sorted runs

• **Pass i**: merge $(M - 1)$ level-$(i - 1)$ runs at a time, and write out a level-i run
 • $(M - 1)$ memory blocks for input, 1 to buffer output
 • # of level-i runs = $\left\lceil \frac{\# \text{ of level-}(i-1) \text{ runs}}{M-1} \right\rceil$

• **Final pass** produces one sorted run
Note: The pages of memory are being reused!

- We just have M memory blocks/pages, whereas the number of blocks of R can be much larger
 - \(B(R) \gg M \) typically
 - Otherwise you will load all pages and sort in memory in a single pass!

- We need to reuse both input and output pages in memory
 - Once the output pages are full, flush them (write) to disk
 - Once an input page is fully processed in Pass-1 onward, get the next page from the same run
 - In pass-0, sort M-pages together, reuse the memory pages for the next M-pages and so on...

- Pass-0 uses an “in-place” sorting algorithm (with constant additional space), so all M pages can be used
Performance of external merge sort

• Number of passes: \(\left\lfloor \log_{M-1} \left(\frac{B(R)}{M} \right) \right\rfloor + 1 \)

• I/O’s
 • Multiply by \(2 \cdot B(R)\): each pass reads the entire relation once and writes it once
 • Subtract \(B(R)\) for the final pass
 • Roughly, this is \(O(B(R) \times \log_M B(R))\)

• Memory requirement: \(M\) (as much as possible)

We do not count the final write!
Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off: smaller fan-in (more passes)

- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
 - More sequential I/O’s
 - Trade-off: larger cluster → smaller fan-in (more passes)
Announcements (Thu. Oct 15)

• Keep working on your project!
 • MS-2 due next Monday (10/19)
 • Need to submit a basic working version of your website (all functionalities not needed, but interactions from/to UI and databases should be there) + other things

• HW6 due next Thursday (10/22)

• Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)

• No Gradiance this week.

• Review of clustered/unclustered on Monday
Sort-merge join

\[R \bowtie_{R.A=S.B} S \]

- Sort \(R \) and \(S \) by their join attributes; then merge \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and \(r, s = \) next in \(R \) and \(S \)

- I/O’s: \(\text{sorting} + 2B(R) + 2B(S) \) (always?)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins
Example of merge join

\[R \bowtie_{R.A=S.B} S: \]

\[R: \]
- \(r_1.A = 1 \)
- \(r_2.A = 3 \)
- \(r_3.A = 3 \)
- \(r_4.A = 5 \)
- \(r_5.A = 7 \)
- \(r_6.A = 7 \)
- \(r_7.A = 8 \)

\[S: \]
- \(s_1.B = 1 \)
- \(s_2.B = 2 \)
- \(s_3.B = 3 \)
- \(s_4.B = 3 \)
- \(s_5.B = 8 \)

\[r_1s_1 \]
- \(r_2s_3 \)
- \(r_2s_4 \)
- \(r_3s_3 \)
- \(r_3s_4 \)
- \(r_7s_5 \)
Optimization of SMJ

- **Idea**: combine join with the (last) merge phase of merge sort
- **Sort**: produce sorted runs for R and S such that there are fewer than M of them total
- **Merge and join**: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

![Diagram of disk and memory with sorted runs and merge-join process]
Performance of SMJ

• If SMJ completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$ - why 3?
 • Memory requirement
 • We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 • $M > \sqrt{B(R) + B(S)}$

• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join
Other sort-based algorithms

• Union (set), difference, intersection
 • More or less like SMJ

• Duplication elimination
 • External merge sort
 • Eliminate duplicates in sort and merge

• Grouping and aggregation
 • External merge sort, by group-by columns
 • Trick: produce “partial” aggregate values in each run, and combine them during merge
 • This trick doesn’t always work though
 • Examples: SUM(DISTINCT ...), MEDIAN(...)
Hashing-based algorithms
Hash join

\[R \bowtie_{R.A=S.B} S \]

• Main idea
 • Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 • If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Hash join considers only those along the diagonal!

Nested-loop join considers all slots
Partitioning phase

- Partition R and S according to the same hash function on their join attributes

$M - 1$ partitions of R
Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

![Diagram showing the probing phase process with R partitions on disk and S partitions on memory, with loading, streaming, and probing actions.]
Example

- $R(A), S(B)$
- $R \bowtie_{R.A=S.B} S$
- $B(R) = 6$
- $B(S) = 9$
- $M = 4$
- Each page of R, S contains just one record
- Hash function for partitioning $h = A \% 3$ (for R), $B \% 3$ for S
- Hash function for probing $h2 = A \% 2$ (for R), $B \% 2$ for S

Partitioning for R done, next similar for S

1. Partitioning phase
 - Disk
 - Original Relation R, S
 - $R = \{3, 4, 6, 7, 13\}$
 - $S = \{1, 2, 9, 15\}$
 - Hash function $h = \% 3$
 - $M = 4$ main memory pages
 - 1 for input, 3 for hash buckets

2. Probing phase
 - Probing for partition-0 and 1st page of S in partition 0,
 Similarly for other pages of S, and for partitions 1 and 2
 - Disk
 - Join Result at the end
 - $R = \{6, 17\}$
 - $S = \{1, 4, 7, 13\}$
 - $M = 4$ main memory pages
 - 1 for S pages (one by one), one for output, 3 for hash table for R-partition using $h2$

2-pass works here as at least one relation
has <= 2 pages in each partition
Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{M - 1}$
 • $M > \sqrt{B(R)} + 1$
 • We can always pick R to be the smaller relation, so:
 $$M > \sqrt{\min(B(R), B(S))} + 1$$
Generalizing for larger inputs

• What if a partition is too large for memory?
 • Read it back in and partition it again!
 • See the duality in multi-pass merge sort here?
Hash join versus SMJ

(Assuming two-pass)

• I/O’s: same

• Memory requirement: hash join is lower
 \[\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)} \]
 • Hash join wins when two relations have very different sizes

• Other factors
 • Hash join performance depends on the quality of the hash
 • Might not get evenly sized buckets
 • SMJ can be adapted for inequality join predicates
 • SMJ wins if \(R \) and/or \(S \) are already sorted
 • SMJ wins if the result needs to be in sorted order
What about nested-loop join?

• May be best if many tuples join
 • Example: non-equality joins that are not very selective

• Necessary for black-box predicates
 • Example: WHERE user_defined_pred(R.A, S.B)
Announcements (Tue. Oct 20)

• HW6a (probs 1, 2) due Thursday (10/22)
• HW6b (prob 3) due next Tuesday (10/27)

• Short Lecture-quiz-3 (Sorting etc.) due next Thursday (10/22)

• No Gradiance this week.

• Review of keys/superkeys/FDs/BCNF on Monday

• Please check all grades posted – regrade requests through gradescope or Google Form only within a week
Other hash-based algorithms

• Just like Sorting!

• Union (set), difference, intersection
 • More or less like hash join

• Duplicate elimination
 • Check for duplicates within each partition/bucket

• Grouping and aggregation
 • Apply the hash functions to the group-by columns
 • Tuples in the same group must end up in the same partition/bucket
 • Keep a running aggregate value for each group
 • May not always work
Index-based algorithms
Selection using index

• Equality predicate: $\sigma_{A=v}(R)$
 • Use an ISAM, B^+-tree, or hash index on $R(A)$

• Range predicate: $\sigma_{A>v}(R)$
 • Use an ordered index (e.g., ISAM or B^+-tree) on $R(A)$
 • Hash index is not applicable

• Indexes other than those on $R(A)$ may be useful
 • Example: B^+-tree index on $R(A, B)$
 • How about B^+-tree index on $R(B, A)$?
Index versus table scan

Situations where index clearly wins:

• **Index-only queries** which do not require retrieving actual tuples
 • Example: $\pi_A(\sigma_{A>v}(R))$

• Primary index clustered according to search key
 • One lookup leads to all result tuples in their entirety
Index versus table scan (cont’d)

BUT(!):

• Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
 • Need to follow pointers to get the actual result tuples
 • Say that 20% of R satisfies $A > v$
 • Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% $|R|$
• I/O’s for scan-based selection: $B(R)$
• Table scan wins if a block contains more than 5 tuples!
Index nested-loop join

\[R \bowtie_{R.A = S.B} S \]

- Idea: use a value of \(R. A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 - Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)
 - Output \(rs \)
- I/O’s: \(B(R) + |R| \cdot (\text{index lookup}) \)
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if \(|R| \) is not too big
 - Better pick \(R \) to be the smaller relation
- Memory requirement: 3
Example

- R.A values (1 R-tuple/page): 7, 2, 9, 8, 3
 - $B(R) = |R| = 5$

- B+-tree Index on S.B, 2 S-tuples/data page
 - Clustered, 3 levels, all index/data pages in memory
 - Assume foreign key S.B to primary key R.A
 - Assume each R.A joins with the same no. of S.B
 - $|S| = 10, B(S) = 5$
 - Assume matching data entries fit in one leaf
 - Each R tuple joins with 2 S tuples that fit in 1 S-page

- Algo:
 - For every page of R
 - Cost of R = $B(R) = 5$
 - For every tuple of R in that page
 - Send the value of R.A as the key value
 - Retrieve the matching S records from data pages pointed to by the matching index entries
 - Output all of them

- For every R.A value, max cost of accessing matching S tuples = 3 (accessing leaves) + 1 (accessing data page)

- Total cost of index-nested-loop-join = $B(R) + |R| (3 + 1) = 5 + 5 \times 4 = 25$
Zig-zag join using ordered indexes

\[R \bowtie_{R.A=S.B} S \]

- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
Summary of techniques

• Scan
 • Selection, duplicate-preserving projection, nested-loop join

• Sort
 • External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Hash
 • Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

• Index
 • Selection, index nested-loop join, zig-zag join