On the Limits of Computing

Reasons for Failure
1. Runs too long
 - Real time requirements
 - Predicting yesterday's weather
2. Non-computable!
3. Don't know the algorithm

Existence of Noncomputable Functions

Approach
- Matching up Programs and Functions
- E.g., assume 3 functions, only 2 programs
- Without details, conclude one function has no program

Have: Uncountable Infinity of Functions Mapping int to int
- How can we show that is true?
- Functions can be seen as columns in tables
- Put all functions into a huge (infinite!) table
- Show that even that cannot hold them all
- Can you identify the functions in the following table?

Table of All Integer to Integer Functions

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

A Function NOT in this (inclusive?) Table

<table>
<thead>
<tr>
<th>1+1</th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4+1</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6+1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9+1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1+1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1+1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8+114</td>
<td>13</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64+121</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34+128</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>100</td>
<td>55</td>
<td>31+1</td>
</tr>
</tbody>
</table>
Existence of Noncomputable Functions

- All Programs Can be Ordered (thus Countable)
 - By size, shortest program first
 - Just use alphabetical order
- Try to Draw Lines Between Functions and Programs
 - Could draw lines from every program to every function
 - But, have proved functions uncountable...
 - Thus, There Must be Functions With NO Programs!
- Hard to come up with function that computer can't produce
 - Possible example: true random generator
 (No algorithm can produce truly random number sequence)
 - Use Table
 - Program must be of finite size; Requires infinite table

Noncomputable Programs

- Programs that Read Programs
 - What programs have we used that read in programs?
 - Express programs as a single string (formatting messed up)
 - Therefore, could write program to see if there is an if statement in the program: answers YES or NO
 - How about, Does program halt?
 - Lack of while (and functions) guarantees a halt
 - Not very sophisticated
 - Not Halting for All Possible Inputs is usually considered a Bug
- Solving the Halting Problem
 - Write specific code to check out more complicated cases
 - Gets more and more involved...

The Halting Problem: Does it Halt?

- Consider Following Program: Does it halt for all input?
 // input an integer value for k
 while (k > 1)
 {
 if ((k/2) * 2 == k) // is k even?
 k = k / 2;
 else
 k = 3 * k + 1;
 }
- Try It!
 - e.g. 17: 52 26 13, 40 20 10 5, 16 8 4 2 1
 - For a long time, no one knew whether this quit for all inputs.

Proving Noncomputability

- Mathematicians have proven that no one, finite program can check this property for all possible programs
- Examples of non-computable problems
 - Equivalence: Define by same input > same output
 - Use variation of above program; not sure it ends
 - Cannot generally prove equivalence
- Use Proof by Contradiction (Indirect Proof)
- Proving non-computability
 - Sketch of proof
Noncomputability Proof

- **Assume Existence of Function** `halt`:
  ```java
  String halt(String p, String x);
  ```
 - Inputs: `p = program`, `x = input data`
 - Returns: "Halts"
 or "Does not halt"

- **Can now write:**
  ```java
  String selfhalt(String p);
  ```
 - Inputs: `p = program`
 - Returns: "Halts on self"
 or "Does not halt on self"
 - Uses: `halt(p, p)`; i.e.: asking if halts when program `p` uses `itself` as data

Noncomputability Proof.2

- **Now write function** `contrary`:
  ```java
  void contrary();
  ```
  ```java
  TextField program = new TextField(1000);
  String p, answer;
  p = program.getText(); answer = selfhalt(p);
  if (answer.equals("Halts on self"))
  { 
    while (true) // infinite loop
    answer = "x";
  }
  else
  return; // i.e., halts
  }
  ```
 - "Feed it" this program.

Noncomputability Proof.3

- **Paradox!**
 - If `halt` program decides it halts, it goes into infinite loop and `goes on forever`
 - If `halt` program decides it doesn't halt, it `quits` immediately
- **Therefore** `halt` cannot exist!

- Whole classes of programs on program behavior are non-computable
 - Equivalence
 - Many other programs that deal with the `behavior` of a program

Living with Noncomputability

- **What Does It All Mean?**
 - Not necessarily a very tough constraint unless you get “too greedy”.
 - Programs can't do everything.
 - Beware of people who say they can!