Analyzing Algorithms

- **Remember `SortByFreqs` APT Problem:**
 - Start with array of words (Strings)
 - Find frequency of each word
 - Return array of words ordered from most frequent to least
 - (In case of a tie, return in alphabetical order)

```java
public class SortByFreqs {
    public String[] sort(String[] data) {
        // fill in code here
    }
}
```

- **There are several approaches to a solution**
 - Are they all equivalent?
Analyzing Algorithms

- Consider three solutions to `SortByFreqs`, also code used in Anagram discussion
 - Sort, then scan looking for changes
 - Insert into Set, then count each unique string
 - Find unique elements without sorting, sort these, then count each unique string

- We want to discuss trade-offs of these solutions
 - Ease to develop, debug, verify
 - Runtime efficiency
 - Vocabulary for discussion
What is big-Oh about? (preview)

- Intuition: avoid details when they don’t matter, and they don’t matter when input size \((N)\) is big enough
 - For polynomials, use only leading term, ignore coefficients

\[
\begin{align*}
\text{\(t = 3n\)} & \quad \text{\(t = 6n-2\)} & \quad \text{\(t = 15n + 44\)} \\
\text{\(t = n^2\)} & \quad \text{\(t = n^2-6n+9\)} & \quad \text{\(t = 3n^2+4n\)}
\end{align*}
\]

- The first family is \(\mathcal{O}(n)\), the second is \(\mathcal{O}(n^2)\)
 - Intuition: family of curves, generally the same shape
 - More formally: \(\mathcal{O}(f(n))\) is an upper-bound, when \(n\) is large enough the expression \(c \cdot f(n)\) is larger
 - Intuition: linear function: double input, double time, quadratic function: double input, quadruple the time
More on O-notation, big-Oh

- Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
 - Allows us to compare algorithms \textit{in the limit}
 - \(20N\) hours vs \(N^2\) microseconds: \textit{which is better?}

- O-notation is an upper-bound, this means that \(N\) is \(O(N)\), but it is also \(O(N^2)\); we try to provide \textit{tight} bounds. Formally:
 - A function \(g(N)\) is \(O(f(N))\) if there exist constants \(c\) and \(n\) such that \(g(N) < cf(N)\) for all \(N > n\)
Big-Oh calculations from code

- **Search for element in an array:**
 - What is complexity of code (using O-notation)?
 - What if array doubles, what happens to time?

```java
for(int k=0; k < a.length; k++) {
    if (a[k].equals(target)) return true;
}
return false;
```

- **Complexity if we call N times on M-element vector?**
 - What about best case? Average case? Worst case?
Big-Oh calculations again

- Alcohol APT: first string to occur 3 times
 - What is complexity of code (using O-notation)?

```java
for(int k=0; k < a.length; k++) {
    int count = 0;
    for(int j=0; j <= k; k++) {
        if (a[j].equals(a[k])) count++;
    }
    if (count >= 3) return a[k];
}
return ""; // nothing occurs three times
```

- What happens to time if array doubles in size?
 - $1 + 2 + 3 + ... + n-1$, why and what’s O-notation?
Amortization: Expanding ArrayLists

- Expand capacity of list when `add()` called
- Calling `add` N times, doubling capacity as needed

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing cost</th>
<th>Cumulative cost</th>
<th>Resizing Cost per item</th>
<th>Capacity After add</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5-8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>$2^m+1 - 2^{m+1}$</td>
<td>2^{m+1}</td>
<td>$2^{m+2}-2$</td>
<td>around 2</td>
<td>2^{m+1}</td>
</tr>
</tbody>
</table>

- What if we grow size by one each time?
Some helpful mathematics

- $1 + 2 + 3 + 4 + \ldots + N$
 - $N \frac{(N+1)}{2}$, exactly $= \frac{N^2}{2} + \frac{N}{2}$ which is $O(N^2)$ why?

- $N + N + N + \ldots + N$ (total of N times)
 - $N \times N = N^2$ which is $O(N^2)$

- $N + N + N + \ldots + N + \ldots + N + \ldots + N$ (total of $3N$ times)
 - $3N \times N = 3N^2$ which is $O(N^2)$

- $1 + 2 + 4 + \ldots + 2^N$
 - $2^{N+1} - 1 = 2 \times 2^N - 1$ which is $O(2^N)$

- Impact of last statement on adding 2^N+1 elements to a vector
 - $1 + 2 + \ldots + 2^N + 2^{N+1} = 2^{N+2} - 1 = 4 \times 2^N - 1$ which is $O(2^N)$
Running times @ 10^6 instructions/sec

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000003</td>
<td>0.00001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.00010</td>
<td>0.000664</td>
<td>0.1000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.00100</td>
<td>0.010000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.01000</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.10000</td>
<td>1.661000</td>
<td>2.78 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 day</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>