Big Oh Again Again

- Have taken the attitude that mostly you can look things up
- Now need to be able to *do your own* derivations
- *Extend* our menu of solutions to common recurrence
- Let’s look at previously shown table
Recognizing Common Recurrences

- Below are some algorithms and recurrence relation encountered
- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is the time for quicksort to run on an n-element vector

\[
T(n) = T(n/2) + O(1) \quad \text{binary search} \quad O(\log n)
\]
\[
T(n) = T(n-1) + O(1) \quad \text{sequential search} \quad O(n)
\]
\[
T(n) = 2T(n/2) + O(1) \quad \text{tree traversal} \quad O(n)
\]
\[
T(n) = 2T(n/2) + O(n) \quad \text{quicksort} \quad O(n \log n)
\]
\[
T(n) = T(n-1) + O(n) \quad \text{selection sort} \quad O(n^2)
\]

- Remember the algorithm, re-derive complexity
Big Oh for Quickselect

- Quickselect finds the Nth Smallest item in a list
 - For example
 - `{ 13, 14, 11, 17, 15, 19, 12, 16, 18, 17}`
 - 4th smallest is 14. Program partially sorts so that it ends up in the 4th index position (3).

- Code on next slide
 - Has much in common with Quicksort
 - What are the difference?

- Recurrence Relation
 - $T(0) = 1$
 - $T(N) = T(N/2) + N$

- What is Big Oh?
Quickselect

- Partially reorders list so that \texttt{kindex} smallest is in \textit{proper position}

```java
void quickselect(String[] list, int first, int last, int kIndex){
    int k, lastIndex = first;
    String pivot = list[first];
    for(k = first+1; k <= last; k++){
        if (list[k].compareTo(pivot) <= 0){
            lastIndex++; swap(list, lastIndex, k);
        }
    }
    swap(list, lastIndex, first);
    if (lastIndex == kIndex) return;
    if (kindex < lastIndex)
        quickselect(list, first, lastIndex-1, kindex);
    else
        quickselect(list, lastIndex+1, last, kindex);
}
```
Solving Quickselect Big Oh

- Plug, simplify, reduce, guess, verify?

\[T(n) = T(n/2) + n \]
\[T(0) = 1 \]
\[T(n/2) = T(n/2/2) + n/2 \]
\[T(n) = \left[T(n/4) + n/2 \right] + n = T(n/4)+3n/2 \]
\[T(n/4) = T(n/4/2) + n/4 \]
\[T(n) = \left[(T(n/8) + n/4) + n/2 \right] + n = T(n/8)+7n/4 \]
\[T(n) = T(n/2^k) + (2 - 1/2^k)n \quad \text{find the pattern!} \]

Now, let \(k = \log n \), then \(T(n) = T(0) + \sim 2n = 1+2n \)

- Get to base case, solve the recurrence: \(O(n) \)
Helpful formulae

濉 We always mean base 2 unless otherwise stated

濉 What is log(1024)?
濉 \(\log(xy) = \log(x) + \log(y) \)
濉 \(y \log(x) \)
濉 \(n \log(2) = n \)
濉 \(2^{(\log n)} = n \)

濉 Sums (also, use sigma notation when possible)

濉 \(1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \)
濉 \(1 + 2 + 3 + \ldots + n = n(n+1)/2 = \sum_{i=1}^{n} i \)
濉 \(a + ar + ar^2 + \ldots + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n-1} ar^i \)
Towers of Hanoi

// Initial state for n=3

//

// | | |
// (___) 1 | | |
// (____) 2 | | |
// (______) 3 | | |

Sample output responding to hanoi("A", "C", "B", 3);

>Move disk 1 from A to C
>Move disk 2 from A to B
>Move disk 1 from C to B
>Move disk 3 from A to C
>Move disk 1 from B to A
>Move disk 2 from B to C
>Move disk 1 from A to C
void hanoi(String from, String to, String via, int n)
// Pre: n > 0 disks in pile "from" to be moved to pile "to"
// with pile "via" available for intermediate storage. All
// piles so that disk n always above disk n+k where k > 0.
// Post: Messages generated to show how to move disks to pile "to"
// with intermediate use of all piles but only one disk moved at
// a time and at all times for all n, disk n above disk n+k where
// k > 0. (I.e., at no time is a larger disk above a smaller disk
// where smaller disks have smaller numbers than larger disks.)
{
 if (n == 1) // base case: only one disk in pile
 System.out.println("Move disk 1 from " + from + " to " + to);
 else {
 hanoi(from, via, to, n-1); // move disks above to alternate
 System.out.println("Move disk " + n + " from " + from + " to "
 + to);
 hanoi(via, to, from, n-1); // move disk above to target
 }
}
Solving Towers of Hanoi Big Oh

- Recurrence relation:

\[T(n) = 2T(n-1) + 1 \]
\[T(0) = 1 \]

\[T(n-1) = 2T(n-1-1) + 1 \]
\[T(n) = 2[2T(n-2) + 1] + 1 = 4T(n-2) + 3 \]
\[T(n-2) = T(n-2-1) + 1 \]
\[T(n) = 2[2(2T(n-3) + 1) + 1] + 1 = 8T(n-3) + 7 \]

\[T(n) = 2^k T(n-k) + 2^k - 1 \]

find the pattern!

Now, let \(k=n \), then
\[T(n) = 2^n T(0) + 2^n - 1 = 2^{n+1} - 1 \]

- Get to base case, solve the recurrence: \(O(2^n) \)

- Oh – Oh!
Eugene (Gene) Myers

- Lead computer scientist/software engineer at Celera Genomics (now at Berkeley)

- "What really astounds me is the architecture of life. The system is extremely complex. It's like it was designed." ... "There's a huge intelligence there."