Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

• A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
• Set theory deals with operations between, relations among, and statements about sets.
• Sets are ubiquitous in computer software systems.
• All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be **logically inconsistent**!

 – This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!

 – \therefore The conjunction of the axioms is a contradiction!

 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• **More sophisticated set theories fix this problem.**
Basic notations for sets

• For sets, we’ll use variables S, T, U, \ldots
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• *Set builder notation*: For any proposition $P(x)$ over any universe of discourse,
 $\{x | P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects a, b, and c denote,
 $\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}$.

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If $a=b$, then $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}$.
 – This set contains (at most) 2 elements!
Definition of Set Equality

• Two sets are declared to be equal *if and only if* they contain *exactly the same* elements.

• In particular, it does not matter *how the set is defined or denoted.*

• **For example:** The set \{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5 \} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\}
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \quad \text{The Natural numbers.} \]
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \quad \text{The Integers.} \]
 \[\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125\ldots \]

• “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- $x \in S$ ("x is in S") is the proposition that object x is an element or member of set S.
 - e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x$ is a letter of the alphabet$\}$
 - Can define set equality in terms of \in relation:
 $\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)$
 “Two sets are equal iff they have all the same members.”

- $x \notin S :\equiv \neg(x \in S)$ “x is not in S”
The Empty Set

- \emptyset (“null”, “the empty set”) is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x|\text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg\exists x: x\in\emptyset$.
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S$, $S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \iff S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg(S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \nsubseteq S \). Similar for \(S \subsetneq T \).

Example:
\[
\{1,2\} \subset \{1,2,3\}
\]
Sets Are Objects, Too!

• The objects that are elements of a set may *themselves* be sets.

• E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$
then $S=\emptyset$,

\[
\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}
\]

• Note that 1 $\neq \{1\} \neq \{\{1\}\} !!!!$

Very Important!
Cardinality and Finiteness

• \(|S|\) (read “the cardinality of \(S\)”)) is a measure of how many different elements \(S\) has.

• \(E.g., |\emptyset| = 0, \ |\{1,2,3\}| = 3, \ |\{a,b\}| = 2, \ |\{\{1,2,3\},\{4,5\}\}| = 2\)

• If \(|S| \in \mathbb{N}\), then we say \(S\) is finite. Otherwise, we say \(S\) is infinite.

• What are some infinite sets we’ve seen?

\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)
The **Power Set** Operation

- The *power set* \(P(S) \) of a set \(S \) is the set of all subsets of \(S \). \[P(S) \equiv \{ x \mid x \subseteq S \}. \]
- *E.g.* \(P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \} \).
- Sometimes \(P(S) \) is written \(2^S \).
- Note that for finite \(S \), \[|P(S)| = 2^{|S|}. \]
- It turns out \(\forall S: |P(S)| > |S| \), *e.g.* \(|P(\mathbb{N})| > |\mathbb{N}| \). *There are different sizes of infinite sets!*
Review: Set Notations So Far

• Variable objects x, y, z; sets S, T, U.
• Literal set \{a, b, c\} and set-builder \{x\mid P(x)\}.
• \in relational operator, and the empty set \emptyset.
• Set relations $=, \subseteq, \supseteq, \subset, \supset, \emptyset$, etc.
• Venn diagrams.
• Cardinality $|S|$ and infinite sets N, Z, R.
• Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 – (That do not have self-consistent properties.)
• These “sets” mathematically cannot exist.
• *E.g.* let $S = \{ x \mid x \not\in x \}$. Is $S \in S$?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.

Contrast with sets’ $\{\}$
Cartesian Products of Sets

• For sets A, B, their *Cartesian product* $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.

• *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$.

René Descartes (1596-1650)
Review of §1.6

• Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
• Set notations $\{a, b, ...\}$, $\{x \mid P(x)\}$...
• Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S \times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

• For sets A, B, their $\text{Union } A \cup B$ is the set containing all elements that are either in A, or (“\lor”) in B (or, of course, in both).

• Formally, $\forall A,B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.

• Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

• $\{a, b, c\} \cup \{2, 3\} = \{a, b, c, 2, 3\}$
• $\{2, 3, 5\} \cup \{3, 5, 7\} = \{2, 3, 5, 3, 5, 7\} = \{2, 3, 5, 7\}$

Think “The **United** States of America includes every person who worked in **any** U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.

• Formally, $\forall A,B: A \cap B = \{x \mid x \in A \land x \in B\}$.

• Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):

 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- \(\{a, b, c\} \cap \{2, 3\} = \emptyset \)
- \(\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\} \)

Think “The **intersection** of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

- Subtract out items in intersection, to compensate for double-counting them!

\[
|A \cup B| = |A| + |B| - |A \cap B|
\]

- Example: How many students are on our class email list? Consider set \(M \), \(I = \{ \text{students turned in an information sheet} \} \), \(M = \{ \text{sent the TAs their email address} \} \)

\[
|I \cup M| = |I| + |M| - |I \cap M|
\]
Set Difference

• For sets A, B, the *difference of A and B*, written $A \setminus B$, is the set of all elements that are in A but not B. Formally:

$$A \setminus B := \{x \mid x \in A \land x \notin B\}$$

$$= \{x \mid \neg(x \in A \rightarrow x \in B)\}$$

• Also called:

 The *complement of B with respect to A*.
Set Difference Examples

- \{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \{1,4,6\}

- \Z - \N = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\} = \{x \mid x \text{ is an integer but not a nat.} \#\} = \{x \mid x \text{ is a negative integer}\} = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

- The *universe of discourse* can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U \setminus A$.
- *E.g.*, If $U = \mathbb{N}$, $\{3,5\} = \{0,1,2,4,6,7,\ldots\}$
More on Set Complements

- An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- **Identity:** \(A \cup \emptyset = A = A \cap U \)
- **Domination:** \(A \cup U = U, A \cap \emptyset = \emptyset \)
- **Idempotent:** \(A \cup A = A = A \cap A \)
- **Double complement:** \(\overline{\overline{A}} = A \)
- **Commutative:** \(A \cup B = B \cup A, A \cap B = B \cap A \)
- **Associative:** \(A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
A \cup B = \overline{A} \cap \overline{B}
\]
\[
A \cap B = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

• Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 – Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 – We know that $x \in A$, and either $x \in B$ or $x \in C$.
 • Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 • Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

• Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(A \cup B)</td>
<td>((A \cup B) - B)</td>
<td>(A - B)</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B)\overline{C} = (A\overline{C}) \cup (B\overline{C})\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B)\overline{C})</th>
<th>(A\overline{C})</th>
<th>(B\overline{C})</th>
<th>((A\overline{C}) \cup (B\overline{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(A\overline{C})</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(B\overline{C})</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>((A\overline{C}) \cup (B\overline{C}))</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>((A\overline{C}) \cup (B\overline{C}))</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>((A\overline{C}) \cup (B\overline{C}))</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>((A\overline{C}) \cup (B\overline{C}))</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>((A\overline{C}) \cup (B\overline{C}))</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-\), \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets,

\[X = \{ A \mid P(A) \}. \]
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 $A_1 \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n)$
 (grouping & order is irrelevant)
- “Big U” notation: $\bigcup_{i=1}^{n} A_i$
- Or for infinite sets of sets: $\bigcup_{A \in X} A$
Generalized Intersection

• Binary intersection operator: \(A \cap B \)
• \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2)\cap\ldots)\cap A_n) \]
 (grouping & order is irrelevant)
• “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]
• Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• E.g., one can represent natural numbers as
 – Sets: 0:=∅, 1:=\{0\}, 2:=\{0,1\}, 3:=\{0,1,2\}, ...
 – Bit strings:
 0:=0, 1:=1, 2:=10, 3:=11, 4:=100, ...
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $
exists i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “\cup”, “\cap”, “\neg” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects \((\text{elements})\) that we can describe (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be **logically inconsistent**!

 – This means, there exist naïve set theory propositions \(p\) such that you can prove that both \(p\) and \(\neg p\) follow logically from the axioms of the theory!

 – \(\therefore\) The conjunction of the axioms is a contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects \(a, b,\) and \(c\) denote,
 \[
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.
 \]

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If \(a=b\), then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}\).
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain exactly the same elements.
- In particular, it does not matter *how the set is defined or denoted.*
- **For example:** The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5\} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\} \)
Infinite Sets

- Conceptually, sets may be infinite \((i.e.,\) not finite, without end, unending).
- Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \text{ The Natural numbers.} \]
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \text{ The Integers.} \]
 \[\mathbb{R} = \text{The “Real” numbers, such as 374.1828471929498181917281943125…} \]
- “Blackboard Bold” or double-struck font \((\mathbb{N}, \mathbb{Z}, \mathbb{R})\) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- $x \in S$ ("x is in S") is the proposition that object x is an *element* or *member* of set S.
 - *e.g.* $3 \in \mathbb{N}$, "a" $\in \{x \mid x$ is a letter of the alphabet\}
 - Can define set equality in terms of \in relation:
 \[\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T) \]
 "Two sets are equal iff they have all the same members."

- $x \notin S : \equiv \neg(x \in S)$ "x is not in S"
The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x|\text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg\exists x: x\in\emptyset$.
Subset and Superset Relations

- \(S \subseteq T \) ("S is a subset of T") means that every element of \(S \) is also an element of \(T \).
- \(S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T) \)
- \(\emptyset \subseteq S, \ S \subseteq S \).
- \(S \supseteq T \) ("S is a superset of T") means \(T \subseteq S \).
- Note \(S = T \iff S \subseteq T \land S \supseteq T \).
- \(S \nsubseteq T \) means \(\neg (S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \)
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("S is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \nsubseteq S \). Similar for \(S \subsetneq T \).

Example:
\[
\{1,2\} \subset \{1,2,3\}
\]

Venn Diagram equivalent of \(S \subset T \)
Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let $S=\{x \mid x \subseteq \{1,2,3\}\}$
 then $S=\{\emptyset,\{
 1\}, \{2\}, \{3\},\{
 1,2\}, \{1,3\}, \{2,3\},\{
 1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!
Cardinality and Finiteness

• \(|S|\) (read “the cardinality of \(S\)”)) is a measure of how many different elements \(S\) has.
• \(E.\,g.\., \left|\emptyset\right|=0, \left|\{1,2,3\}\right|=3, \left|\{a,b\}\right|=2, \left|\left\{\{1,2,3\},\{4,5\}\right\}\right|=2\)
• If \(|S|\in\mathbb{N}\), then we say \(S\) is finite. Otherwise, we say \(S\) is infinite.
• What are some infinite sets we’ve seen?

\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)
The **Power Set Operation**

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S : |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \not\in$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set *descriptions* that lead to pathological structures that are not *well-defined*.
 - (That do not have self-consistent properties.)
- These “sets” mathematically *cannot* exist.
- *E.g.* let \(S = \{ x \mid x \notin x \} \). Is \(S \in S \)?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.

- **Note that** $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.

- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.

Contrast with sets’ $\{\}$
Cartesian Products of Sets

• For sets A, B, their *Cartesian product* $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.

• *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...

René Descartes
(1596-1650)
Review of §1.6

• Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations \{a,b,...\}, \{x|P(x)\}…
• Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S \times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

- For sets A, B, their Union $A \cup B$ is the set containing all elements that are either in A, or ("\text{\texttt{v}}") in B (or, of course, in both).
 - Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}$.
 - Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \{a, b, c\} \cup \{2, 3\} = \{a, b, c, 2, 3\}
- \{2, 3, 5\} \cup \{3, 5, 7\} = \{2, 3, 5, 3, 5, 7\} = \{2, 3, 5, 7\}

Think “The **United** States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and (“\(\land\)”) in B.

• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.

• Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):

 $$\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$$
Intersection Examples

• \{a,b,c\} \cap \{2,3\} = \emptyset
• \{2,4,6\} \cap \{3,4,5\} = \{4\}

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

• Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)

• Example: the set of even integers is disjoint with the set of odd integers.

Help, I’ve been disjointed!
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

Example: How many students are on our class email list? Consider set

\[I = \{ \text{students turned in an information sheet} \} \]

\[M = \{ \text{students sent the TAs their email address} \} \]

Some students did both!

\[|I \cup M| = |I| + |M| - |I \cap M| \]

Subtract out items in intersection, to compensate for double-counting them!
Set Difference

- For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

 $A - B \equiv \{ x \mid x \in A \land x \notin B \}$

 $\quad = \{ x \mid \neg(x \in A \rightarrow x \in B) \}$

- Also called:
 The *complement of B with respect to A*.
Set Difference Examples

- \(\{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \{1,4,6\} \)

- \(\mathbb{Z} - \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\} \)
 = \(\{x \mid x \) is an integer but not a nat. \#\} \)
 = \(\{x \mid x \) is a negative integer\} \)
 = \(\{\ldots, -3, -2, -1\} \)
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

• The *universe of discourse* can itself be considered a set, call it \(U \).

• When the context clearly defines \(U \), we say that for any set \(A \subseteq U \), the *complement* of \(A \), written \(\overline{A} \), is the complement of \(A \) w.r.t. \(U \), *i.e.*, it is \(U - A \).

• *E.g.*, If \(U = \mathbb{N} \), \(\{3,5\} = \{0,1,2,4,6,7,\ldots\} \)
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \not\in A \}$$
Set Identities

- **Identity:** \(A \cup \emptyset = A = A \cap U \)
- **Domination:** \(A \cup U = U , A \cap \emptyset = \emptyset \)
- **Idempotent:** \(A \cup A = A = A \cap A \)
- **Double complement:** \(\overline{\overline{A}} = A \)
- **Commutative:** \(A \cup B = B \cup A , A \cap B = B \cap A \)
- **Associative:** \(A \cup (B \cup C) = (A \cup B) \cup C , A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form \(E_1 = E_2 \) (where the \(E \)s are set expressions), here are three useful techniques:

1. Prove \(E_1 \subseteq E_2 \) and \(E_2 \subseteq E_1 \) separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \).

- **Part 1:** Show \(A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \).
 - Assume \(x \in A \cap (B \cup C) \), & show \(x \in (A \cap B) \cup (A \cap C) \).
 - We know that \(x \in A \), and either \(x \in B \) or \(x \in C \).
 - Case 1: \(x \in B \). Then \(x \in A \cap B \), so \(x \in (A \cap B) \cup (A \cap C) \).
 - Case 2: \(x \in C \). Then \(x \in A \cap C \), so \(x \in (A \cap B) \cup (A \cap C) \).
 - Therefore, \(x \in (A \cap B) \cup (A \cap C) \).
 - Therefore, \(A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \).

- **Part 2:** Show \((A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C) \). …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Prove \((A \cup B) - B = A - B\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) - B)</th>
<th>(A - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
[Membership Table Exercise]

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets,
 \[X = \{ A \mid P(A) \} \].
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 $$A \cup A_2 \cup \ldots \cup A_n \equiv (((A_1 \cup A_2) \cup \ldots) \cup A_n)$$
 (grouping & order is irrelevant)
- "Big U" notation:
 $$\bigcup_{i=1}^{n} A_i$$
- Or for infinite sets of sets:
 $$\bigcup_{A \in X} A$$
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n) \]
 (grouping & order is irrelevant)
- “Big Arch” notation: \(\prod_{i=1}^{n} A_i \)
- Or for infinite sets of sets:
 \[\prod_{A \in X} A \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• E.g., one can represent natural numbers as
 – Sets: $0 := \emptyset$, $1 := \{0\}$, $2 := \{0,1\}$, $3 := \{0,1,2\}$, …
 – Bit strings:
 $0 := 0$, $1 := 1$, $2 := 10$, $3 := 11$, $4 := 100$, …
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U=\mathbb{N}$, $S=\{2,3,5,7,11\}$, $B=001101010001$.

In this representation, the set operators “\cup”, “\cap”, “$\overline{}$” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

• A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.

• Set theory deals with operations between, relations among, and statements about sets.

• Sets are ubiquitous in computer software systems.

• All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

- But, the resulting theory turns out to be **logically inconsistent**!
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

- More sophisticated set theories fix this problem.
Basic notations for sets

• For sets, we’ll use variables S, T, U, \ldots
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• *Set builder notation*: For any proposition $P(x)$ over any universe of discourse,
 $\{x | P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects a, b, and c denote,
 \[\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}. \]

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If a=b, then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}. \)
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain **exactly the same** elements.
- In particular, it does not matter *how the set is defined or denoted.*
- **For example:** The set \{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\}
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \] The natural numbers.
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \] The integers.
 \[\mathbb{R} = \] The “Real” numbers, such as 374.1828471929498181917281943125…

• “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn 1834-1923
Basic Set Relations: Member of

- \(x \in S \) ("x is in S") is the proposition that object \(x \) is an \(\text{Element} \) or \(\text{member} \) of set \(S \).

 - e.g. \(3 \in \mathbb{N}, \) “a”\(\in \{x \mid x \text{ is a letter of the alphabet} \}\)

 - Can define set equality in terms of \(\in \) relation:
 \[\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T) \]
 “Two sets are equal iff they have all the same members.”

- \(x \notin S \equiv \neg(x \in S) \) “x is not in S”
The Empty Set

- \(\emptyset \) ("null", "the empty set") is the unique set that contains no elements whatsoever.
- \(\emptyset = \{ \} = \{ x | \text{False} \} \)
- No matter the domain of discourse, we have the axiom \(\neg \exists x: x \in \emptyset \).
Subset and Superset Relations

- \(S \subseteq T \) ("S is a subset of T") means that every element of S is also an element of T.
- \(S \subseteq T \iff \forall x (x \in S \rightarrow x \in T) \)
- \(\emptyset \subseteq S, S \subseteq S \).
- \(S \supseteq T \) ("S is a superset of T") means \(T \subseteq S \).
- Note \(S = T \iff S \subseteq T \land S \supseteq T \).
- \(S \nsubseteq T \) means \(\neg (S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \)
Proper (Strict) Subsets & Supersets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \not\subset S$. Similar for $S \supset T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$
Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let $S = \{ x \mid x \subseteq \{ 1,2,3 \} \}$
 then $S = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 1,2 \}, \{ 1,3 \}, \{ 2,3 \}, \{ 1,2,3 \} \}$
- Note that $1 \neq \{ 1 \} \neq \{ \{ 1 \} \}$!!!!
Cardinality and Finiteness

- $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
- E.g., $|\emptyset| = 0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$.
- If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we’ve seen? \mathbb{N}, \mathbb{Z}, \mathbb{R}.
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S.
 $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S,
 $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects \(x, y, z\); sets \(S, T, U\).
- Literal set \(\{a, b, c\}\) and set-builder \(\{x|P(x)\}\).
- \(\in\) relational operator, and the empty set \(\emptyset\).
- Set relations \(=, \subseteq, \supseteq, \subset, \supset, \emptyset\), etc.
- Venn diagrams.
- Cardinality \(|S|\) and infinite sets \(\mathbb{N}, \mathbb{Z}, \mathbb{R}\).
- Power sets \(P(S)\).
Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined. (That do not have self-consistent properties.)
- These “sets” mathematically cannot exist.
- E.g. let $S = \{ x \mid x \not\in x \}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.
Cartesian Products of Sets

• For sets A, B, their **Cartesian product** $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.

• *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A|\cdot|B|$.

• Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$.

René Descartes (1596-1650)
Review of §1.6

• Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
• Set relation operators $x\in S$, $S\subseteq T$, $S\supseteq T$, $S=T$, $S\subset T$, $S\supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S\times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

• For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).

• Formally, $\forall A, B: A \cup B = \{ x | x \in A \lor x \in B \}$.

• Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset):
 $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

- \(\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}\)
- \(\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} \Rightarrow \{2,3,5,7\}\)

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.

• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.

• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset): $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$.
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = \emptyset \)
- \(\{2,4,6\} \cap \{3,4,5\} = \{4\} \)

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called *disjoint* (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)

- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

- Example: How many students are on our email list? Consider set \(I = M \), where \(I \) is the set of students who turned in an information sheet and \(M \) is the set of students who sent the TAs their email address. Some students did both! Thus, the number of students on our email list is:

\[|I \cup M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

$$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg(x \in A \rightarrow x \in B) \}$$

• Also called:

The *complement of B with respect to A*.
Set Difference Examples

- \{1,2,3,4,5,6\} – \{2,3,5,7,9,11\} = \{1,4,6\}
- \mathbb{Z} – \mathbb{N} = \{…, −1, 0, 1, 2, …\} − \{0, 1, …\} = \{x \mid x \text{ is an integer but not a nat.} \#\} = \{x \mid x \text{ is a negative integer}\} = \{…, −3, −2, −1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

- The *universe of discourse* can itself be considered a set, call it \(U \).
- When the context clearly defines \(U \), we say that for any set \(A \subseteq U \), the *complement* of \(A \), written \(\overline{A} \), is the complement of \(A \) w.r.t. \(U \), i.e., it is \(U \setminus A \).
- *E.g.,* If \(U = \mathbb{N} \), \(\{3, 5\} = \{0, 1, 2, 4, 6, 7, \ldots\} \)
More on Set Complements

- An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

• Identity: \(A \cup \emptyset = A = A \cap U \)
• Domination: \(A \cup U = U, A \cap \emptyset = \emptyset \)
• Idempotent: \(A \cup A = A = A \cap A \)
• Double complement: \(\overline{\overline{A}} = A \)
• Commutative: \(A \cup B = B \cup A, A \cap B = B \cap A \)
• Associative: \(A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

- Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
A \cup B = \overline{A} \cap \overline{B}
\]

\[
A \cap B = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.

2. Use set builder notation & logical equivalences.

3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A ∪ B) - B</th>
<th>A - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>A \cup B</th>
<th>(A \cup B) \setminus C</th>
<th>A \setminus C</th>
<th>B \setminus C</th>
<th>(A \setminus C) \cup (B \setminus C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets, \(X = \{A \mid P(A)\}\).
Generalized Union

• Binary union operator: $A \cup B$

• n-ary union:

$\bigcup_{i=1}^{n} A_i \\ A \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n))$

(grouping & order is irrelevant)

• “Big U” notation: $\bigcup_{A \in X} A$

• Or for infinite sets of sets: $\bigcup_{A \in X} A$
Generalized Intersection

• Binary intersection operator: \(A \cap B \)

• \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n)) \]
 (grouping & order is irrelevant)

• “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]

• Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 – Sets: $0 := \emptyset$, $1 := \{0\}$, $2 := \{0, 1\}$, $3 := \{0, 1, 2\}$, …
 – Bit strings: $0 := 0$, $1 := 1$, $2 := 10$, $3 := 11$, $4 := 100$, …
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2,3,5,7,11\}$, $B = 001101010001$.

In this representation, the set operators “∪”, “∩”, “¬” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• Basic premise: Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be logically inconsistent!
 – This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 – \therefore The conjunction of the axioms is a contradiction!
 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

- For sets, we’ll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
 - \{a, b, c\} is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, \{x|P(x)\} is the set of all x such that $P(x)$.
Basic properties of sets

- Sets are inherently *unordered*:
 - No matter what objects \(a, b,\) and \(c\) denote,
 \[
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.
 \]
- All elements are *distinct* (unequal); multiple listings make no difference!
 - If \(a=b\), then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c\}\).
 - This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain exactly the same elements.
- In particular, it does not matter *how the set is defined or denoted*.
- **For example:** The set \{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } x>0 \text{ and } x<25\}
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \quad \text{The Natural numbers.} \]
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \quad \text{The Integers.} \]
 \[\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125\ldots \]
- “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- $x \in S$ ("x is in S") is the proposition that object x is an element or member of set S.
 - e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x$ is a letter of the alphabet\}
 - Can define set equality in terms of \in relation:
 $\forall S,T: S=T \iff (\forall x: x \in S \iff x \in T)$
 "Two sets are equal iff they have all the same members."

- $x \notin S \equiv \neg(x \in S)$ "x is not in S"
The Empty Set

- \(\emptyset \) ("null", "the empty set") is the unique set that contains no elements whatsoever.
- \(\emptyset = \{ \} = \{ x \mid False \} \)
- No matter the domain of discourse, we have the axiom \(\neg \exists x: x \in \emptyset \).
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S, S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \iff S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("S is a proper subset of T") means that \(S \subseteq T \) but \(T \not\subset S \). Similar for \(S \subset T \).

Example:

\[
\{1,2\} \subset \{1,2,3\}
\]
Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$
 then $S=\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
 - Note that $1 \not\in \{1\} \not\in \{\{1\}\}$!!!!

Very Important!
Cardinality and Finiteness

- $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
- \(E.g., |\emptyset| = 0, \{1,2,3\} = 3, \{a,b\} = 2,\)
 \(|\{\{1,2,3\},\{4,5\}\}| = _2_

- If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we’ve seen?

$\mathbb{N}, \mathbb{Z}, \mathbb{R}$
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) := \{x \mid x \subseteq S\}$.
- *E.g.* $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$.
- Sometimes $P(S)$ is written 2^S.
 - Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, *e.g.* $|P(\mathbb{N})| > |\mathbb{N}|$.
 There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \emptyset$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 - (That do not have self-consistent properties.)
- These “sets” mathematically cannot exist.
- \(E.g. \) let \(S = \{ x \mid x \notin x \} \). Is \(S \in S \)?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

• These are like sets, except that duplicates matter, and the order makes a difference.
• For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
• Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
• Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.
Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.
- *E.g.* $\{a, b\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$
- Note that for finite A, B, $|A \times B| = |A| \cdot |B|$.
- Note that the Cartesian product is not commutative: i.e., $\neg \forall A B: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review of §1.6

• Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
• Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S \times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

- For sets A, B, their *Union* $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{ x | x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a *superset* of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \(\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\} \)
- \(\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\} \)

Think “The **United** States of America includes every person who worked in **any** U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and (“\&”) in B.

• Formally, $\forall A, B$: $A \cap B = \{x \mid x \in A \land x \in B\}$.

• Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):

 $\forall A, B$: $(A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

• \(\{a, b, c\} \cap \{2, 3\} = \emptyset\)
• \(\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\}\)

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called *disjoint* (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

- Example: How many students are on our class email list? Consider \(E = I \cup M \)
 \[I = \{ \text{sent an information sheet} \} \]
 \[M = \{ \text{sent the TAs their email address} \} \]
 Some students did both!

\[|E| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

 $$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

 $$= \{ x \mid \neg(x \in A \rightarrow x \in B) \}$$

• Also called:
 The *complement of B with respect to A*.
Set Difference Examples

• \{1,2,3,4,5,6\} – \{2,3,5,7,9,11\} = \{1,4,6\}

• \mathbb{Z} – \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} – \{0, 1, \ldots\} = \{x \mid x \text{ is an integer but not a nat.}\}
 = \{x \mid x \text{ is a negative integer}\}
 = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

• $A - B$ is what’s left after B “takes a bite out of A”

Chomp!
Set Complements

• The *universe of discourse* can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U - A$.

• *E.g.*, If $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, \ldots \}$
More on Set Complements

• An equivalent definition, when U is clear:

$$
\overline{A} = \{ x \mid x \notin A \}
$$
Set Identities

• Identity: \(A \cup \emptyset = A = A \cap U \)
• Domination: \(A \cup U = U \), \(A \cap \emptyset = \emptyset \)
• Idempotent: \(A \cup A = A = A \cap A \)
• Double complement: \(\overline{\overline{A}} = A \)
• Commutative: \(A \cup B = B \cup A \), \(A \cap B = B \cap A \)
• Associative: \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]
\[A \cap B = \overline{A} \cup \overline{B} \]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

• Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 – Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 – We know that $x \in A$, and either $x \in B$ or $x \in C$.
 • Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 • Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

• Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>A \cup B</th>
<th>((A \cup B) - B)</th>
<th>A - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).
Review of §1.6-1.7

- Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,\ldots\}, \{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets, \(X=\{A \mid P(A)\}\).
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 $A \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots((A_1 \cup A_2) \cup \ldots)\cup A_n)$
 (grouping & order is irrelevant)
- “Big U” notation:
 $\bigcup_{i=1}^{n} A_i$
- Or for infinite sets of sets:
 $\bigcup_{A \in X} A$
Generalized Intersection

• Binary intersection operator: \(A \cap B \)
• \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv (((A_1 \cap A_2) \cap \ldots) \cap A_n) \]
 (grouping & order is irrelevant)
• “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]
• Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 - Sets: $0 := \emptyset$, $1 := \{0\}$, $2 := \{0, 1\}$, $3 := \{0, 1, 2\}$, ...
 - Bit strings: $0 := 0$, $1 := 1$, $2 := 10$, $3 := 11$, $4 := 100$, ...
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2,3,5,7,11\}$, $B = 001101010001$.

In this representation, the set operators “\cup”, “\cap”, “$\overline{\cdot}$” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
• A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.

• Set theory deals with operations between, relations among, and statements about sets.

• Sets are ubiquitous in computer software systems.

• All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise**: Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

- **But, the resulting theory turns out to be logically inconsistent!**
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

- **More sophisticated set theories fix this problem.**
Basic notations for sets

• For sets, we’ll use variables S, T, U, \ldots

• We can denote a set S in writing by listing all of its elements in curly braces:

 $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.

• *Set builder notation:* For any proposition $P(x)$ over any universe of discourse,

 $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.

Basic properties of sets

• Sets are inherently unordered:
 – No matter what objects a, b, and c denote,
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} =
 \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.

• All elements are distinct (unequal);
 multiple listings make no difference!
 – If a=b, then \{a, b, c\} = \{a, c\} = \{b, c\} =
 \{a, a, b, a, b, c, c, c, c\}.
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal \textit{if and only if} they contain exactly the same elements.
- In particular, it does not matter \textit{how the set is defined or denoted}.
- \textbf{For example:} The set \{1, 2, 3, 4\} =
 \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} =
 \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25 \}
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 \(\mathbb{R} = \) The “Real” numbers, such as 374.1828471929498181917281943125…
- “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R} \)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Basic Set Relations: Member of

• $x \in S$ (“x is in S”) is the proposition that object x is an \textit{element} or \textit{member} of set S.

 – e.g. $3 \in \mathbb{N}$, “a” $\in \{x \mid x$ is a letter of the alphabet$\}$

 – Can define set equality in terms of \in relation: $\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)$
 “Two sets are equal iff they have all the same members.”

• $x \notin S :\equiv \neg (x \in S)$ “x is not in S”
The Empty Set

• \emptyset (“null”, “the empty set”) is the unique set that contains no elements whatsoever.

• $\emptyset = \{ \} = \{ x | \text{False} \}$

• No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.
Subset and Superset Relations

• $S \subseteq T$ (“S is a subset of T”) means that every element of S is also an element of T.

• $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$

• $\emptyset \subseteq S$, $S \subseteq S$.

• $S \supseteq T$ (“S is a superset of T”) means $T \subseteq S$.

• Note $S = T \iff S \subseteq T \land S \supseteq T$.

• $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x \ (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \nsubseteq S$. Similar for $S \subsetneq T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$
Sets Are Objects, Too!

• The objects that are elements of a set may *themselves* be sets.

• *E.g.* let $S=\{x \mid x \subseteq \{1,2,3\}\}$
 then $S=\emptyset,$
 $$\{1\}, \{2\}, \{3\},$$
 $$\{1,2\}, \{1,3\}, \{2,3\},$$
 $$\{1,2,3\}$$

• Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!
Cardinality and Finiteness

• \(|S|\) (read “the cardinality of \(S\)”\) is a measure of how many different elements \(S\) has.

• \(E.g., |\emptyset| = 0, \quad |\{1,2,3\}| = 3, \quad |\{a,b\}| = 2, \quad |\{\{1,2,3\},\{4,5\}\}| = ___2_

• If \(|S|\in\mathbb{N}\), then we say \(S\) is finite. Otherwise, we say \(S\) is infinite.

• What are some infinite sets we’ve seen?

\[\mathbb{N}, \mathbb{Z}, \mathbb{R}\]
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) := \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
- Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x|P(x)\}$.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \emptyset$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set *descriptions* that lead to pathological structures that are not *well-defined*.
 - (That do not have self-consistent properties.)
- These “sets” mathematically *cannot* exist.
- *E.g.* let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- *For purposes of this class, don’t worry about it!*

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$. Contrast with sets’ $\{\}$
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.
Cartesian Products of Sets

- For sets A, B, their *Cartesian product* $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.

- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

- Note that for finite A, B, $|A \times B| = |A||B|$.

- Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.

- Extends to $A_1 \times A_2 \times \ldots \times A_n$.

René Descartes (1596-1650)
Review of §1.6

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,\ldots\}$, $\{x \mid P(x)\}$...
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

- For sets A, B, their Union $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \(\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\} \)
- \(\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\} \)

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and (“\land”) in B.
• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.
• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset):
 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = \varnothing \)
- \(\{2,4,6\} \cap \{3,4,5\} = \{4\} \)

Think “The **intersection** of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

- Example: How many students are on our class email list? Consider set \(E \) as students who turned in an information sheet and set \(M \) as students who sent the TAs their email address.

\[|E \cup M| = |E| + |M| - |E \cap M| \]

Some students did both! Subtract items in intersection to compensate for double-counting them!
Set Difference

• For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

$$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg (x \in A \rightarrow x \in B) \}$$

• Also called:

 The *complement of B with respect to A*.
Set Difference Examples

- \(\{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \{1,4,6\}\)

- \(\mathbb{Z} - \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\}\)

 \(= \{x \mid x \text{ is an integer but not a nat. #}\}\)

 \(= \{x \mid x \text{ is a negative integer}\}\)

 \(= \{\ldots, -3, -2, -1\}\)
Set Difference - Venn Diagram

• $A \setminus B$ is what’s left after B “takes a bite out of A”
Set Complements

• The *universe of discourse* can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U - A$.

• *E.g.*, If $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, \ldots\}$
More on Set Complements

- An equivalent definition, when U is clear:
 \[\overline{A} = \{ x \mid x \notin A \} \]
Set Identities

- **Identity:** $A \cup \emptyset = A = A \cap U$
- **Domination:** $A \cup U = U$, $A \cap \emptyset = \emptyset$
- **Idempotent:** $A \cup A = A = A \cap A$
- **Double complement:** $\overline{(\overline{A})} = A$
- **Commutative:** $A \cup B = B \cup A$, $A \cap B = B \cap A$
- **Associative:** $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\begin{align*}
A \cup B &= \overline{A} \cap \overline{B} \\
A \cap B &= \overline{A} \cup \overline{B}
\end{align*}
\]
Proving Set Identities

To prove statements about sets, of the form

\[E_1 = E_2 \]
(where the \(E \)s are set expressions),

here are three useful techniques:

1. Prove \(E_1 \subseteq E_2 \) and \(E_2 \subseteq E_1 \) separately.

2. Use set builder notation & logical equivalences.

3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) \overline{B} = A \overline{B} \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) \overline{B})</th>
<th>(A \overline{B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) \neg C = (A \neg C) \cup (B \neg C)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) \neg C)</th>
<th>(A \neg C)</th>
<th>(B \neg C)</th>
<th>((A \neg C) \cup (B \neg C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x | P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \bar{S}.
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets,

\[
X = \{ A \mid P(A) \}.
\]
Generalized Union

• Binary union operator: $A \cup B$

• n-ary union:
 \[
 A \cup A_2 \cup \ldots \cup A_n \equiv (((A_1 \cup A_2) \cup \ldots) \cup A_n)
 \]
 (grouping & order is irrelevant)

• “Big U” notation:
 \[
 \bigcup_{i=1}^{n} A_i
 \]

• Or for infinite sets of sets:
 \[
 \bigcup_{A \in X} A
 \]
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[
 A_1 \cap A_2 \cap \ldots \cap A_n \equiv (\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n)
 \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[
 \bigcap_{i=1}^{n} A_i
 \]
- Or for infinite sets of sets:
 \[
 \bigcap_{A \in X} A
 \]
Representations

• A frequent theme of this course will be methods of *representing* one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 – Sets: \(0 := \emptyset, 1 := \{0\}, 2 := \{0,1\}, 3 := \{0,1,2\}, \ldots \)
 – Bit strings:
 \(0 := 0, 1 := 1, 2 := 10, 3 := 11, 4 := 100, \ldots \)
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “\cup”, “\cap”, “\neg” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• **Sets**
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• **Reading: Sections 1.6-1.7**

• **Upcoming**
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects
 (*elements*) that we can *describe* (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be *logically inconsistent*!

 – This means, there exist naïve set theory propositions *p* such that you can prove that both *p* and *¬p* follow logically from the axioms of the theory!

 – ∴: The conjunction of the axioms is a contradiction!

 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

- For sets, we’ll use variables S, T, U, …
- We can denote a set S in writing by listing all of its elements in curly braces:
 - $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

- Sets are inherently unordered:
 - No matter what objects a, b, and c denote,
 \(\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\} \).

- All elements are distinct (unequal); multiple listings make no difference!
 - If \(a=b \), then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\} \).
 - This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set \(\{1, 2, 3, 4\} \) = \(\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} \) = \(\{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\} \)
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 \(\mathbb{R} = \) The “Real” numbers, such as 374.1828471929498181917281943125…

• “Blackboard Bold” or double-struck font \((\mathbb{N}, \mathbb{Z}, \mathbb{R}) \) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- \(x \in S \) ("x is in S") is the proposition that object \(x \) is an *element* or *member* of set \(S \).
 - *e.g.* \(3 \in \mathbb{N}, \text{ "a" } \in \{ x \mid x \text{ is a letter of the alphabet} \} \)
 - Can define set equality in terms of \(\in \) relation:
 \[
 \forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)
 \]
 "Two sets are equal iff they have all the same members."

- \(x \notin S \iff \neg (x \in S) \) "x is not in S"
The Empty Set

- \(\emptyset \) ("null", "the empty set") is the unique set that contains no elements whatsoever.
- \(\emptyset = \{ \} = \{ x \mid \text{False} \} \)
- No matter the domain of discourse, we have the axiom \(\neg \exists x : x \in \emptyset \).
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S$, $S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \iff S \subseteq T \land S \supseteq T$.
- $S \not\subseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$.
Proper (Strict) Subsets & Supersets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \nsubseteq S$. Similar for $S \supset T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$
Sets Are Objects, Too!

• The objects that are elements of a set may themselves be sets.

• E.g. let $S=\{x \mid x \subseteq \{1,2,3\}\}$
then $S=\{\emptyset,\{
1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

• Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!
Cardinality and Finiteness

- $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
- E.g., $|\emptyset|=0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$
- If $|S|\in\mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we’ve seen?

$\mathbb{N} \mathbb{Z} \mathbb{R}$
The *Power Set* Operation

- **The power set** $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$.
- Sometimes $P(S)$ is written 2^S.

 Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x|P(x)\}$.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \emptyset$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 - (That do not have self-consistent properties.)
• These “sets” mathematically cannot exist.
• *E.g.* let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.
Cartesian Products of Sets

- For sets A, B, their **Cartesian product** $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.
- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n$....

René Descartes
(1596-1650)
Review of §1.6

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \setminus.
Start §1.7: The Union Operator

• For sets A, B, their $\text{Union } A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).

• Formally, $\forall A,B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.

• Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

- \(\{a, b, c\} \cup \{2, 3\} = \{a, b, c, 2, 3\} \)
- \(\{2, 3, 5\} \cup \{3, 5, 7\} = \{2, 3, 5, 3, 5, 7\} = \{2, 3, 5, 7\} \)

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.

• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.

• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset):

 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- $\{a,b,c\} \cap \{2,3\} = \emptyset$
- $\{2,4,6\} \cap \{3,4,5\} = \{4\}$

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

Subtract out items in intersection, to compensate for double-counting them!

\[|A \cup B| = |A| + |B| - |A \cap B| \]

Example: How many students are on our class email list? Consider \(M \), \(I \), and \(M \cap I \).

\(M = \{ \text{students who sent TAs their email address} \} \)
\(I = \{ \text{students who turned in an information sheet} \} \)
\(M \cap I = \{ \text{students who did both} \} \)

\[|M \cup I| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and $B*$, written $A \setminus B$, is the set of all elements that are in A but not B. Formally:

\[
A \setminus B \equiv \{ x \mid x \in A \land x \notin B \} \\
= \{ x \mid \neg (x \in A \rightarrow x \in B) \}
\]

• Also called:
The *complement of B with respect to A*.
Set Difference Examples

- \{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \{1,4,6\}

- \(\mathbb{Z} - \mathbb{N}\) = \{\ldots, -1, 0, 1, 2, \ldots \} - \{0, 1, \ldots \}
 = \{x \mid x \text{ is an integer but not a nat.} \#\}
 = \{x \mid x \text{ is a negative integer}\}
 = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

- The *universe of discourse* can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U \setminus A$.
- *E.g.*, If $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, ... \}$
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$

![Diagram showing the complement of set A within a universal set U]
Set Identities

- Identity: \(A \cup \emptyset = A = A \cap U \)
- Domination: \(A \cup U = U \) , \(A \cap \emptyset = \emptyset \)
- Idempotent: \(A \cup A = A = A \cap A \)
- Double complement: \(\overline{\overline{A}} = A \)
- Commutative: \(A \cup B = B \cup A \) , \(A \cap B = B \cap A \)
- Associative: \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

- Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
A \cup B = \overline{A} \cap \overline{B} \\
A \cap B = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	0	0
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) - C)</th>
<th>(A - C)</th>
<th>(B - C)</th>
<th>((A - C) \cup (B - C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets,
\[X = \{ A \mid P(A) \}. \]
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 $$A \cup A_2 \cup \ldots \cup A_n \equiv (((A_1 \cup A_2) \cup \ldots) \cup A_n)$$
 (grouping & order is irrelevant)
- “Big U” notation:
 $$\bigcup_{i=1}^{n} A_i$$
- Or for infinite sets of sets:
 $$\bigcup_{A \in X} A$$
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n) \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]
- Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 – Sets: $0 := \emptyset$, $1 := \{0\}$, $2 := \{0,1\}$, $3 := \{0,1,2\}$, …
 – Bit strings: $0 := 0$, $1 := 1$, $2 := 10$, $3 := 11$, $4 := 100$, …
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \Leftrightarrow (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “∪”, “∩”, “¯” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

• **A set** is a new type of structure, representing an *unordered* collection (group, plurality) of zero or more *distinct* (different) objects.

• **Set theory** deals with operations between, relations among, and statements about sets.

• Sets are ubiquitous in computer software systems.

• *All* of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.
- But, the resulting theory turns out to be **logically inconsistent**!
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!
- More sophisticated set theories fix this problem.
Basic notations for sets

• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x|P(x)\}$ is *the set of all x such that $P(x)$*.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects a, b, and c denote,
 \[
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \\
 \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.
 \]

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If a = b, then \{a, b, c\} = \{a, c\} = \{b, c\} = \\
 \{a, a, b, a, b, c, c, c, c\}.
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal \textit{if and only if} they contain \textit{exactly the same} elements.
- In particular, it does not matter \textit{how the set is defined or denoted}.
- \textbf{For example:} The set \{1, 2, 3, 4\} = \\
 \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \\
 \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\}
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 - \(\mathbb{N} = \{0, 1, 2, \ldots \} \) The Natural numbers.
 - \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \} \) The Integer numbers.
 - \(\mathbb{R} = \) The “Real” numbers, such as 374.1828471929498181917281943125…
- “Blackboard Bold” or double-struck font (\(\mathbb{N, Z, R} \)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

• $x \in S$ ("x is in S") is the proposition that object x is an *element* or *member* of set S.
 - e.g. $3 \in \mathbb{N}$, "$a" \in \{x \mid x \text{ is a letter of the alphabet}\}
 - Can define set equality in terms of \in relation:
 \[\forall S,T: S=T \iff (\forall x: x \in S \iff x \in T) \]
 "Two sets are equal iff they have all the same members."

• $x \notin S :\equiv \neg (x \in S)$ "x is not in S"
The Empty Set

- \(\emptyset \) ("null", "the empty set") is the unique set that contains no elements whatsoever.
- \(\emptyset = \{\} = \{x | \text{False}\} \)
- No matter the domain of discourse, we have the axiom \(\neg \exists x : x \in \emptyset \).
Subset and Superset Relations

- \(S \subseteq T \) ("S is a subset of T") means that every element of S is also an element of T.
- \(S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T) \)
- \(\emptyset \subseteq S, \ S \subseteq S \).
- \(S \supseteq T \) ("S is a superset of T") means \(T \subseteq S \).
- Note \(S= T \iff S \subseteq T \land S \supseteq T \).
- \(S \nsubseteq T \) means \(\neg(S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \).
Proper (Strict) Subsets & Supersets

• \(S \subset T \) ("S is a proper subset of T") means that \(S \subseteq T \) but \(T \not\subset S \). Similar for \(S \subsetneq T \).

Example:
\(\{1,2\} \subset \{1,2,3\} \)

Venn Diagram equivalent of \(S \subset T \)
Sets Are Objects, Too!

• The objects that are elements of a set may \textit{themselves} be sets.

• \textit{E.g.} let \(S = \{ x \mid x \subseteq \{1,2,3\} \} \)
then \(S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \} \)

• Note that \(1 \not\in \{1\} \not\in \{\{1\}\} \) !!!!
Cardinality and Finiteness

- \(|S|\) (read “the cardinality of \(S\)”) is a measure of how many different elements \(S\) has.
- E.g., \(|\emptyset| = 0\), \(|\{1,2,3\}| = 3\), \(|\{a,b\}| = 2\), \(|\{\{1,2,3\},\{4,5\}\}| = 2\).
- If \(|S| \in \mathbb{N}\), then we say \(S\) is finite. Otherwise, we say \(S\) is infinite.
- What are some infinite sets we’ve seen?

\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)
The **Power Set** Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S.
 \[P(S) \equiv \{ x \mid x \subseteq S \} \].
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x|P(x)\}$.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \varnothing$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 - (That do not have self-consistent properties.)
- These “sets” mathematically cannot exist.
- *E.g.* let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.

Contrast with sets’ $\{\}$
Cartesian Products of Sets

• For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.

• E.g. $\{a, b\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is not commutative: i.e., $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review of §1.6

• Sets S, T, U… Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
• Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
• Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S \times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

• For sets A, B, their Union $A \cup B$ is the set containing all elements that are either in A, or (“\lor”) in B (or, of course, in both).

• Formally, $\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.

• Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

• \(\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\} \)
• \(\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\} \)

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A *and* ("\land") in B.

• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.

• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset): $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$.
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = \emptyset \)
- \(\{2,4,6\} \cap \{3,4,5\} = \{4\} \)

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

- Subtract out items in intersection, to compensate for double-counting them!

\[|A \cup B| = |A| + |B| - |A \cap B| \]

Example: How many students are on our class email list? Consider set \(I \) and set \(M \),
\(I = \{ \text{students who turned in an information sheet} \} \)
\(M = \{ \text{students who sent the TAs their email address} \} \)
Subtract out the overlap:
\[|I \cup M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A-B$, is the set of all elements that are in A but not B. Formally:
 \[
 A - B \equiv \{ x \mid x \in A \land x \notin B \}
 = \{ x \mid \neg(x \in A \rightarrow x \in B) \}
 \]

• Also called:
 The *complement of B with respect to A*.
Set Difference Examples

- \{1,2,3,4,5,6\} – \{2,3,5,7,9,11\} = \{1,4,6\}
- \mathbb{Z} – \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} – \{0, 1, \ldots\} = \{x \mid x \text{ is an integer but not a nat. #}\} = \{x \mid x \text{ is a negative integer}\} = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”

Set A, Set B, $A - B$
Set Complements

• The universe of discourse can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the complement of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U \setminus A$.

• E.g., If $U = \mathbb{N}$, $\{3,5\} = \{0,1,2,4,6,7,...\}$
More on Set Complements

- An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$

![Diagram showing set A and its complement \overline{A} in the universal set U.]
Set Identities

• Identity: \(A \cup \emptyset = A = A \cap U \)
• Domination: \(A \cup U = U \), \(A \cap \emptyset = \emptyset \)
• Idempotent: \(A \cup A = A = A \cap A \)
• Double complement: \(\overline{\overline{A}} = A \)
• Commutative: \(A \cup B = B \cup A \), \(A \cap B = B \cap A \)
• Associative: \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

- Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B}
\]

\[
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form \(E_1 = E_2 \) (where the \(E \)s are set expressions), here are three useful techniques:

1. Prove \(E_1 \subseteq E_2 \) and \(E_2 \subseteq E_1 \) separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B)^c = (A^c \cup B^c)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B)^c)</th>
<th>(A^c)</th>
<th>(B^c)</th>
<th>((A^c \cup B^c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,\ldots\}$, $\{x \mid P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets \(X = \{A \mid P(A)\}\).
Generalized Union

- Binary union operator: \(A \cup B \)
- \(n \)-ary union:
 \[
 A \cup A_2 \cup \ldots \cup A_n : \equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n)
 \]
 (grouping & order is irrelevant)
- “Big U” notation:
 \[
 \bigcup_{i=1}^{n} A_i
 \]
- Or for infinite sets of sets:
 \[
 \bigcup_{A \in X} A
 \]
Generalized Intersection

• Binary intersection operator: $A \cap B$
• n-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv (((\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n)) \quad \text{(grouping & order is irrelevant)}
• “Big Arch” notation:
 \[
 \bigcap_{i=1}^{n} A_i
 \]
• Or for infinite sets of sets:
 \[
 \bigcap_{A \in X} A
 \]
Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

- *E.g.*, one can represent natural numbers as
 - **Sets**: \(0\equiv \emptyset, \ 1\equiv \{0\}, \ 2\equiv \{0,1\}, \ 3\equiv \{0,1,2\}, \ldots\)
 - **Bit strings**: \(0\equiv 0, \ 1\equiv 1, \ 2\equiv 10, \ 3\equiv 11, \ 4\equiv 100, \ldots\)
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2,3,5,7,11\}$, $B = 001101010001$.

In this representation, the set operators “\(\cup\)”, “\(\cap\)”, “\(\overline{\cdot}\)” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an *unordered* collection (group, plurality) of zero or more *distinct* (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- *All* of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

• **But, the resulting theory turns out to be logically inconsistent!**
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• **More sophisticated set theories fix this problem.**
Basic notations for sets

- For sets, we’ll use variables S, T, U, …
- We can denote a set S in writing by listing all of its elements in curly braces:
 - $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x|P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently unordered:
 – No matter what objects a, b, and c denote,

 $$\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}. $$

• All elements are distinct (unequal); multiple listings make no difference!
 – If $a=b$, then $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}$.
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set \{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\}
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 \(\mathbb{R} = \) The “Real” numbers, such as 374.1828471929498181917281943125…
- “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R} \)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn 1834-1923
Basic Set Relations: Member of

• \(x \in S \) ("x is in S") is the proposition that object \(x \) is an \textit{element} or \textit{member} of set \(S \).

 \begin{itemize}
 \item \(e.g. \ 3 \in \mathbb{N}, \ "a" \in \{x \mid x \text{ is a letter of the alphabet}\} \)
 \item Can define set equality in terms of \(\in \) relation:
 \[\forall S,T: S= T \iff (\forall x: x \in S \iff x \in T) \]
 "Two sets are equal iff they have all the same members."
 \end{itemize}

• \(x \notin S \equiv \neg(x \in S) \) "x is not in S"
The Empty Set

- \(\emptyset \) ("null", "the empty set") is the unique set that contains no elements whatsoever.
- \(\emptyset = \{ \} = \{ x | \text{False} \} \)
- No matter the domain of discourse, we have the axiom \(\neg \exists x : x \in \emptyset \).
Subset and Superset Relations

• $S \subseteq T$ (“S is a subset of T”) means that every element of S is also an element of T.

• $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$

• $\emptyset \subseteq S$, $S \subseteq S$.

• $S \supseteq T$ (“S is a superset of T”) means $T \subseteq S$.

• Note $S = T \iff S \subseteq T \land S \supseteq T$.

• $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \nsubseteq S$. Similar for $S \supset T$.

Example:

\[
\{1,2\} \subset \{1,2,3\}
\]
Sets Are Objects, Too!

• The objects that are elements of a set may *themselves* be sets.

• *E.g.* let $S = \{ x \mid x \subseteq \{1,2,3\} \}$
 then $S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

• Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.

• E.g., $|\emptyset|=0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$

• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen?

$\mathbb{N} \mathbb{Z} \mathbb{R}$
The \textit{Power Set} Operation

- The \textit{power set} $P(S)$ of a set S is the set of all subsets of S. \[P(S) := \{ x \mid x \subseteq S \}. \]
- \textit{E.g.} $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S, \[|P(S)| = 2^{|S|}. \]
- \textit{It turns out} $\forall S: |P(S)| > |S|$, \textit{e.g.} $|P(\mathbb{N})| > |\mathbb{N}|$. \textit{There are different sizes of infinite sets!}
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \notin$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 - (That do not have self-consistent properties.)
- These “sets” mathematically cannot exist.
- E.g. let \(S = \{ x \mid x \notin x \} \). Is \(S \in S \)?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.
Cartesian Products of Sets

• For sets \(A, B \), their Cartesian product
\[
A \times B \equiv \{(a, b) \mid a \in A \land b \in B \}.
\]
• E.g. \(\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\} \)
• Note that for finite \(A, B \), \(|A \times B| = |A||B| \).
• Note that the Cartesian product is not commutative: i.e., \(\forall A, B: A \times B \neq B \times A \).
• Extends to \(A_1 \times A_2 \times \ldots \times A_n \ldots \)

René Descartes
(1596-1650)
Review of §1.6

• Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
• Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S \times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

- For sets \(A, B \), their \textit{Union} \(A \cup B \) is the set containing all elements that are either in \(A \), \textit{or} ("\(\lor \)"") in \(B \) (or, of course, in both).
- Formally, \(\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \} \).
- Note that \(A \cup B \) is a \textit{superset} of both \(A \) and \(B \) (in fact, it is the smallest such superset): \(\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B) \)
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}

Think “The **United** States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)

CompSci 102 © Michael Frank
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and (“and”) in B.

• Formally, $\forall A,B: A \cap B = \{x \mid x \in A \land x \in B\}$.

• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset):
 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = \emptyset \)
- \(\{2,4,6\} \cap \{3,4,5\} = \{4\} \)

Think “The \textbf{intersection} of University Ave. and W 13th St. is just that part of the road surface that lies on \textit{both} streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

- How many elements are in set A?
- How many elements are in set B?

$$|A| + |B| = |A \cup B| + |A \cap B|$$

Example: How many students are on our class email list?

- $E = I_1 \cup I_2$, where I_1 are students who turned in an information sheet,
 and I_2 are students who sent the TAs their email address.

- Some students did both!

$$|E| = |I_1| + |I_2| - |I_1 \cap I_2|$$

In intersection, to count them once, double count them, and subtract items counted twice.
Set Difference

- For sets A, B, the *difference of A and B*, written $A \setminus B$, is the set of all elements that are in A but not B. Formally:

 $$
 A \setminus B \equiv \{ x \mid x \in A \land x \notin B \}
 $$

 $$
 = \{ x \mid \neg(x \in A \Rightarrow x \in B) \}
 $$

- Also called:

 The *complement of B with respect to A*.
Set Difference Examples

- \{1, 2, 3, 4, 5, 6\} \setminus \{2, 3, 5, 7, 9, 11\} = \{1, 4, 6\}

- \(\mathbb{Z} \setminus \mathbb{N}\) = \{\ldots, -1, 0, 1, 2, \ldots\} \setminus \{0, 1, \ldots\}
 = \{x \mid x \text{ is an integer but not a nat.}\}
 = \{x \mid x \text{ is a negative integer}\}
 = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

• The *universe of discourse* can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U \setminus A$.

• *E.g.*, If $U=\mathbb{N}$, $\{3,5\} = \{0,1,2,4,6,7,\ldots\}$
More on Set Complements

- An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- **Identity:** \(A \cup \emptyset = A = A \cap U \)
- **Domination:** \(A \cup U = U, \ A \cap \emptyset = \emptyset \)
- **Idempotent:** \(A \cup A = A = A \cap A \)
- **Double complement:** \(\overline{\overline{A}} = A \)
- **Commutative:** \(A \cup B = B \cup A, \ A \cap B = B \cap A \)
- **Associative:** \(A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- **Part 1:** Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- **Part 2:** Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B)^\sim - B = A^\sim - B.\)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A \cup B)</th>
<th>((A \cup B)^\sim - B)</th>
<th>(A^\sim - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

\[
\begin{array}{cccccc}
A & B & C & A \cup B & (A \cup B) - C & A - C & B - C & (A - C) \cup (B - C) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Review of §1.6-1.7

- Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, \setminus, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets, \(X=\{A \mid P(A)\}\).
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 \[A \cup A_2 \cup \ldots \cup A_n :\equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n) \] (grouping & order is irrelevant)
- “Big U” notation: \[\bigcup_{i=1}^{n} A_i \]
- Or for infinite sets of sets: \[\bigcup_{A \in X} A \]
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n) \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]
- Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]
Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.
- \textit{E.g.}, one can represent natural numbers as
 - Sets: $0\equiv\emptyset$, $1\equiv\{0\}$, $2\equiv\{0,1\}$, $3\equiv\{0,1,2\}$, ...
 - Bit strings: $0\equiv0$, $1\equiv1$, $2\equiv10$, $3\equiv11$, $4\equiv100$, ...
Representing Sets with Bit Strings

For an enumerable u.d. \(U \) with ordering \(x_1, x_2, \ldots \), represent a finite set \(S \subseteq U \) as the finite bit string \(B=b_1 b_2 \ldots b_n \) where
\[
\forall i: x_i \in S \iff (i < n \land b_i = 1).
\]

E.g. \(U = \mathbb{N} \), \(S = \{2,3,5,7,11\} \), \(B = 001101010001 \).

In this representation, the set operators “\(\cup \)”, “\(\cap \)”, “\(\overline{\cdot} \)” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• **Sets**
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• **Reading: Sections 1.6-1.7**

• **Upcoming**
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.
- **But, the resulting theory turns out to be logically inconsistent!**
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!
- **More sophisticated set theories fix this problem.**
Basic notations for sets

- For sets, we’ll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
 - \{a, b, c\} is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x | P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

- Sets are inherently unordered:
 - No matter what objects a, b, and c denote,
 \(\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\} \).

- All elements are distinct (unequal); multiple listings make no difference!
 - If \(a = b \), then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\} \).
 - This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain **exactly the same** elements.
- In particular, it does not matter *how the set is defined or denoted*.
- **For example:** The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5\} = \{x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25\} \)
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 - \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 - \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 - \(\mathbb{R} = \) The “Real” numbers, such as \(374.1828471929498181917281943125\ldots \)
- “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R} \)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

• $x \in S$ (“x is in S”) is the proposition that object x is an element or member of set S.
 – e.g. $3 \in \mathbb{N}$, “a” $\in \{x \mid x$ is a letter of the alphabet$\}$
 – Can define set equality in terms of \in relation: $\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)$
 “Two sets are equal iff they have all the same members.”

• $x \notin S :\equiv \neg (x \in S)$ “x is not in S”
The Empty Set

• \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
• $\emptyset = \{\} = \{x | \text{False}\}$
• No matter the domain of discourse, we have the axiom $\neg \exists x: x \in \emptyset$.
Subset and Superset Relations

- \(S \subseteq T \) (“\(S \) is a subset of \(T \)”) means that every element of \(S \) is also an element of \(T \).
- \(S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T) \)
- \(\emptyset \subseteq S, \ S \subseteq S \).
- \(S \supseteq T \) (“\(S \) is a superset of \(T \)”) means \(T \subseteq S \).
- Note \(S = T \iff S \subseteq T \land S \supseteq T \).
- \(S \nsubseteq T \) means \(\neg(S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \)
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \nsubseteq S \). Similar for \(S \supset T \).

Example:
\(\{1,2\} \subset \{1,2,3\} \)

Venn Diagram equivalent of \(S \subset T \)
Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- \(E.g. \) let \(S = \{ x \mid x \subseteq \{1,2,3\} \} \)
 then \(S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \} \)
- Note that \(1 \neq \{1\} \neq \{\{1\}\} \) !!!!
Cardinality and Finiteness

- $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
- E.g., $|\emptyset|=0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$
- If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we’ve seen? $\mathbb{N} \mathbb{Z} \mathbb{R}$
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S.
 $P(S) :\equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a, b\}) = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S,
 $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, *e.g.*
 $|P(\mathbb{N})| > |\mathbb{N}|$.
 There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \varnothing$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set *descriptions* that lead to pathological structures that are not *well-defined*.
 - (That do not have self-consistent properties.)
- These “sets” mathematically *cannot* exist.
- *E.g.* let \(S = \{ x \mid x \notin x \} \). Is \(S \in S \)?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

• These are like sets, except that duplicates matter, and the order makes a difference.

• For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.

• Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.

• Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.

Contrast with sets’ {}
Cartesian Products of Sets

• For sets A, B, their *Cartesian product* $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.

• *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A,B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review of §1.6

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$...
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \setminus.
Start §1.7: The Union Operator

• For sets A, B, their Union $A \cup B$ is the set containing all elements that are either in A, or (“\lor”) in B (or, of course, in both).

• Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}$.

• Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.

• Formally, $\forall A,B: A \cap B = \{x \mid x \in A \land x \in B\}$.

• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset): $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$.
Intersection Examples

- \(\{a, b, c\} \cap \{2, 3\} = \emptyset \)
- \(\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\} \)

Think “The **intersection** of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called \textit{disjoint} (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

- How many elements are in \(A \) or \(B \)?

Example: How many students are on our class email list? Consider set \(I \) as students who have submitted an information sheet and set \(M \) as students who have sent the TAs their email address.

\[|I \cup M| = |I| + |M| - |I \cap M| \]

Some students did both! Still!

Subtract out items in intersection, to compensate for double-counting them!
Set Difference

• For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

$$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg(x \in A \rightarrow x \in B) \}$$

• Also called:
The *complement of B with respect to A.*
Set Difference Examples

- \(\{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \{1,4,6\} \)
- \(\mathbb{Z} - \mathbb{N} = \{…, -1, 0, 1, 2, …\} - \{0, 1, …\} \)
 - \(= \{x \mid x \text{ is an integer but not a nat. \#}\} \)
 - \(= \{x \mid x \text{ is a negative integer}\} \)
 - \(= \{…, -3, -2, -1\} \)
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

• The universe of discourse can itself be considered a set, call it \(U \).

• When the context clearly defines \(U \), we say that for any set \(A \subseteq U \), the complement of \(A \), written \(\overline{A} \), is the complement of \(A \) w.r.t. \(U \), i.e., it is \(U \setminus A \).

• E.g., If \(U = \mathbb{N} \), \(\{3,5\} = \{0,1,2,4,6,7,...\} \)
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

• Identity: \(A \cup \emptyset = A = A \cap U \)
• Domination: \(A \cup U = U \), \(A \cap \emptyset = \emptyset \)
• Idempotent: \(A \cup A = A = A \cap A \)
• Double complement: \(\overline{\overline{A}} = A \)
• Commutative: \(A \cup B = B \cup A \), \(A \cap B = B \cap A \)
• Associative: \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

- Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]
\[A \cap B = \overline{A} \cup \overline{B} \]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.
 …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) \overline{\neg B} = A \overline{\neg B}\).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(A \cup B)</td>
<td>((A \cup B) \overline{\neg B})</td>
<td>(A \overline{\neg B})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>(A \cup B)</td>
<td>((A \cup B) - C)</td>
<td>(A - C)</td>
<td>(B - C)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets,
 \[X=\{A \mid P(A)\}.
\]
Generalized Union

- **Binary union operator**: $A \cup B$
- **n-ary union**: $A \cup A_2 \cup \ldots \cup A_n \equiv (((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n) (grouping & order is irrelevant)
- **“Big U” notation**: $\bigcup_{i=1}^{n} A_i$
- **Or for infinite sets of sets**: $\bigcup_{A \in X} A$
Generalized Intersection

• Binary intersection operator: $A \cap B$

• n-ary intersection:
 $A_1 \cap A_2 \cap \ldots \cap A_n \equiv (\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n)$
 (grouping & order is irrelevant)

• “Big Arch” notation:
 $\bigcap_{i=1}^{n} A_i$

• Or for infinite sets of sets:
 $\bigcap_{A \in X} A$
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 – Sets: $0 := \emptyset, 1 := \{0\}, 2 := \{0, 1\}, 3 := \{0, 1, 2\}, \ldots$
 – Bit strings:
 $0:=0, 1:=1, 2:=10, 3:=11, 4:=100, \ldots$
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1b_2\ldots b_n$ where $\forall i: x_i \in S \iff (i<n \land b_i=1)$.

E.g. $U=\mathbb{N}$, $S=\{2,3,5,7,11\}$, $B=001101010001$.

In this representation, the set operators “\cup”, “\cap”, “$\overline{}$” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.
- **But, the resulting theory turns out to be logically inconsistent!**
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!
- **More sophisticated set theories fix this problem.**
Basic notations for sets

• For sets, we’ll use variables S, T, U, \ldots
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x | P(x)\}$ is the set of all x such that $P(x)$.

Basic properties of sets

• Sets are inherently unordered:
 – No matter what objects a, b, and c denote,
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} =
 \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.

• All elements are distinct (unequal);
 multiple listings make no difference!
 – If a=b, then \{a, b, c\} = \{a, c\} = \{b, c\} =
 \{a, a, b, a, b, c, c, c, c\}.
 – This set contains (at most) 2 elements!
Definition of Set Equality

• Two sets are declared to be equal if and only if they contain exactly the same elements.
• In particular, it does not matter how the set is defined or denoted.

For example: The set \{1, 2, 3, 4\} = \\
\{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5\} = \\
\{x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25\}
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \quad \text{The Natural numbers.} \]
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \quad \text{The Integers.} \]
 \[\mathbb{R} = \text{The “Real” numbers, such as 374.1828471929498181917281943125…} \]

• “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- $x \in S$ (“x is in S”) is the proposition that object x is an element or member of set S.
 - e.g. $3 \in \mathbb{N}$, “a”$ \in \{x \mid x$ is a letter of the alphabet$\}$
 - Can define set equality in terms of \in relation:
 $\forall S,T: S = T \iff (\forall x: x \in S \iff x \in T)$
 “Two sets are equal iff they have all the same members.”
- $x \notin S \iff \neg(x \in S)$ “x is not in S”
The Empty Set

- \(\emptyset \) ("null", "the empty set") is the unique set that contains no elements whatsoever.
- \(\emptyset = \{ \} = \{ x | \text{False} \} \)
- No matter the domain of discourse, we have the axiom \(\neg \exists x: x \in \emptyset \).
Subset and Superset Relations

- $S \subseteq T$ (“S is a subset of T”) means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$
- \(\emptyset \subseteq S, S \subseteq S\).
- $S \supseteq T$ (“S is a superset of T”) means $T \subseteq S$.
- Note $S=T \iff S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- $S \subset T$ (“S is a proper subset of T”) means that $S \subseteq T$ but $T \not\subset S$. Similar for $S \subsetneq T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$
Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let \(S = \{ x \mid x \subseteq \{ 1,2,3 \} \} \)
 then \(S = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 1,2 \}, \{ 1,3 \}, \{ 2,3 \}, \{ 1,2,3 \} \} \)
- Note that \(1 \neq \{ 1 \} \neq \{ \{ 1 \} \} \) !!!!
Cardinality and Finiteness

- $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
- *E.g.*, $|\emptyset|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$.
- If $|S|\in\mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we’ve seen? $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S. Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x | P(x)\}$.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \emptyset$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 - (That do not have self-consistent properties.)
- These “sets” mathematically cannot exist.
- *E.g.* let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered \(n \)-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For \(n \in \mathbb{N} \), an ordered \(n \)-tuple or a sequence or list of length \(n \) is written \((a_1, a_2, \ldots, a_n)\). Its first element is \(a_1 \), etc.
- Note that \((1, 2) \neq (2, 1) \neq (2, 1, 1)\).
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, \ldots, \(n \)-tuples.

Contrast with sets’ \{\}
Cartesian Products of Sets

• For sets A, B, their Cartesian product $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.

• E.g. $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is not commutative: i.e., $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review of §1.6

• Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
• Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S \times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

- For sets A, B, their *union* $A \cup B$ is the set containing all elements that are either in A, or ("or") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a *superset* of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.

• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.

• Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):
 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

• \{a,b,c\} \cap \{2,3\} = \emptyset
• \{2,4,6\} \cap \{3,4,5\} = \{4\}

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.

Help, I’ve been disjointed!
Inclusion-Exclusion Principle

\[|S \cup B| = |A| + |B| - |A \cap B| \]

- How many students are on our class email list? Consider set \(I \), \(I = \{ \text{sent the TA information} \} \)
- And set \(M \), \(M = \{ \text{sent the TA their email address} \} \)
- Some students did both!
- \[|S \cup M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A \setminus B$, is the set of all elements that are in A but not B. Formally:

$$A \setminus B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg (x \in A \rightarrow x \in B) \}$$

• Also called:

The *complement of B with respect to A.*
Set Difference Examples

• \{1, 2, 3, 4, 5, 6\} – \{2, 3, 5, 7, 9, 11\} = \{1, 4, 6\}

• \(\mathbb{Z} – \mathbb{N}\) = \{\ldots, -1, 0, 1, 2, \ldots\} – \{0, 1, \ldots\}
 = \{x \mid x\ \text{is an integer but not a nat.}\ #\}
 = \{x \mid x\ \text{is a negative integer}\}
 = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A \setminus B$ is what’s left after B “takes a bite out of A”
Set Complements

- The *universe of discourse* can itself be considered a set, call it \(U \).
- When the context clearly defines \(U \), we say that for any set \(A \subseteq U \), the *complement* of \(A \), written \(\overline{A} \), is the complement of \(A \) w.r.t. \(U \), *i.e.*, it is \(U - A \).
- *E.g.*, If \(U = \mathbb{N} \), \(\{3,5\} = \{0,1,2,4,6,7,...\} \)
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{x \mid x \notin A\}$$
Set Identities

- **Identity:** \(A \cup \emptyset = A = A \cap U \)
- **Domination:** \(A \cup U = U \), \(A \cap \emptyset = \emptyset \)
- **Idempotent:** \(A \cup A = A = A \cap A \)
- **Double complement:** \(\overline{\overline{A}} = A \)
- **Commutative:** \(A \cup B = B \cup A \), \(A \cap B = B \cap A \)
- **Associative:** \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]
\[A \cap B = \overline{A} \cup \overline{B} \]
To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) \neg B = A \neg B\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) \neg B)</th>
<th>(A \neg B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) - C)</th>
<th>(A - C)</th>
<th>(B - C)</th>
<th>((A - C) \cup (B - C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

• Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations \{a,b,...\}, \{x|P(x)\}…
• Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
• Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
• Set equality proof techniques:
 – Mutual subsets.
 – Derivation using logical equivalences.
Generalized Unions & Intersections

Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets, \(X=\{A \mid P(A)\}\).
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 \[A \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots ((A_1 \cup A_2) \cup \ldots) \cup A_n) \]
 (grouping & order is irrelevant)
- “Big U” notation: \[\bigcup_{i=1}^{n} A_i \]
- Or for infinite sets of sets: \[\bigcup_{A \in X} A \]
Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary intersection: $A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n)$ (grouping & order is irrelevant)
- “Big Arch” notation: $\prod_{i=1}^{n} A_i$
- Or for infinite sets of sets: $\prod_{A \in X} A$
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 - Sets: $0 := \emptyset$, $1 := \{0\}$, $2 := \{0, 1\}$, $3 := \{0, 1, 2\}$, ...
 - Bit strings: $0 := 0$, $1 := 1$, $2 := 10$, $3 := 11$, $4 := 100$, ...
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “∪”, “∩”, “¬” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

- Sets
 - Indirect, by cases, and direct
 - Rules of logical inference
 - Correct & fallacious proofs

- Reading: Sections 1.6-1.7

- Upcoming
 - Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

- **But, the resulting theory turns out to be logically inconsistent!**
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 - \therefore The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

- **More sophisticated set theories fix this problem.**
Basic notations for sets

- For sets, we’ll use variables \(S, T, U, \ldots \)
- We can denote a set \(S \) in writing by listing all of its elements in curly braces:
 - \(\{a, b, c\} \) is the set of whatever 3 objects are denoted by \(a, b, c \).
- *Set builder notation*: For any proposition \(P(x) \) over any universe of discourse, \(\{x | P(x)\} \) is the set of all \(x \) such that \(P(x) \).
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects a, b, and c denote,
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} =
 \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If a=b, then \{a, b, c\} = \{a, c\} = \{b, c\} =
 \{a, a, b, a, b, c, c, c, c\}.
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain exactly the same elements.
- In particular, it does not matter *how the set is defined or denoted*.
- **For example:** The set \{1, 2, 3, 4\} =
 \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} =
 \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\}
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \quad \text{The Natural numbers.} \]
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \quad \text{The Integers.} \]
 \[\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125\ldots \]
- “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R}\)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- \(x \in S \) ("x is in S") is the proposition that object \(x \) is an element or member of set \(S \).
 - e.g. \(3 \in \mathbb{N} \), "a" \(\in \{x \mid x \text{ is a letter of the alphabet}\}\)
 - Can define set equality in terms of \(\in \) relation:
 \[\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T) \]
 "Two sets are equal iff they have all the same members."

- \(x \notin S \) \(\equiv \neg(x \in S) \) "x is not in S"
The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x|\text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x: x \in \emptyset$.
Subset and Superset Relations

• \(S \subseteq T \) ("S is a subset of T") means that every element of \(S \) is also an element of \(T \).
• \(S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T) \)
• \(\emptyset \subseteq S, \ S \subseteq S \).
• \(S \supseteq T \) ("S is a superset of T") means \(T \subseteq S \).
• Note \(S = T \iff S \subseteq T \land S \supseteq T \).
• \(S \nsubseteq T \) means \(\neg (S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \)
Proper (Strict) Subsets & Supersets

- $S \subset T$ (“S is a proper subset of T”) means that $S \subseteq T$ but $T \nsubseteq S$. Similar for $S \subset T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$
Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let \(S = \{ x \mid x \subseteq \{1, 2, 3\} \} \)
 then \(S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \} \)

- Note that \(1 \neq \{1\} \neq \{\{1\}\} \)! **Very Important!**
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
• E.g., $|\emptyset|=0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$
• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
• What are some infinite sets we’ve seen? $\mathbb{N}, \mathbb{Z}, \mathbb{R}$
The **Power Set** Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \coloneqq \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, *e.g.* $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x | P(x)\}$.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \notin$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 – (That do not have self-consistent properties.)
• These “sets” mathematically cannot exist.
• E.g. let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!
Ordered \(n \)-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For \(n \in \mathbb{N} \), an ordered \(n \)-tuple or a sequence or list of length \(n \) is written \((a_1, a_2, \ldots, a_n)\). Its first element is \(a_1 \), etc.
- Note that \((1, 2) \neq (2, 1) \neq (2, 1, 1)\).
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, \ldots, \(n \)-tuples.
Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B := \{(a, b) \mid a \in A \land b \in B\}$.
- E.g. $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is not commutative: i.e., $\neg \forall A B: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review of §1.6

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \neg.
Start §1.7: The Union Operator

• For sets A, B, their $\text{Union} \ A \cup B$ is the set containing all elements that are either in A, or (“\lor”) in B (or, of course, in both).

• Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}$.

• Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

- \{a, b, c\} \cup \{2, 3\} = \{a, b, c, 2, 3\}
- \{2, 3, 5\} \cup \{3, 5, 7\} = \{2, 3, 5, 3, 5, 7\} = \{2, 3, 5, 7\}

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)

CompSci 102 © Michael Frank
The Intersection Operator

• For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\land") in B.

• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.

• Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):
 \[\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B) \]
Intersection Examples

• $\{a,b,c\} \cap \{2,3\} = \emptyset$
• $\{2,4,6\} \cap \{3,4,5\} = \{4\}$

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

- Subtract out items in intersection, to compensate for double-counting them!

\[|A \cup B| = |A| + |B| - |A \cap B| \]

Example: How many students are on our class email list? Consider set \(M, I = \{ \text{students who turned in an information sheet} \}, \]
\(M = \{ \text{students who sent the TAs their email address} \}, \]
\(|I \cup M| = |I| + |M| - |I \cap M| \)

Some students did both!
Set Difference

• For sets A, B, the *difference of A and $B*$, written $A – B$, is the set of all elements that are in A but not B. Formally:

$$A – B : \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg (x \in A \rightarrow x \in B) \}$$

• Also called:
The *complement of B with respect to A*.
Set Difference Examples

- \{1, 2, 3, 4, 5, 6\} – \{2, 3, 5, 7, 9, 11\} = \{1, 4, 6\}

- \mathbb{Z} – \mathbb{N} = \{…, –1, 0, 1, 2, …\} – \{0, 1, …\}
 = \{x \mid x \text{ is an integer but not a nat. #}\}
 = \{x \mid x \text{ is a negative integer}\}
 = \{…, –3, –2, –1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

• The *universe of discourse* can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \bar{A}, is the complement of A w.r.t. U, *i.e.*, it is $U – A$.

• *E.g.*, If $U = \mathbb{N}$, \[\{3,5\} = \{0,1,2,4,6,7,\ldots\} \]
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- **Identity**: \(A \cup \emptyset = A = A \cap U \)
- **Domination**: \(A \cup U = U \), \(A \cap \emptyset = \emptyset \)
- **Idempotent**: \(A \cup A = A = A \cap A \)
- **Double complement**: \(\overline{\overline{A}} = A \)
- **Commutative**: \(A \cup B = B \cup A \), \(A \cap B = B \cap A \)
- **Associative**: \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

- Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B}
\]

\[
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form \(E_1 = E_2 \) (where the \(E \)s are set expressions), here are three useful techniques:

1. Prove \(E_1 \subseteq E_2 \) and \(E_2 \subseteq E_1 \) separately.

2. Use set builder notation & logical equivalences.

3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) - B)</th>
<th>(A - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

• Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$…
• Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
• Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
• Set equality proof techniques:
 – Mutual subsets.
 – Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on *ordered pairs* of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered *sets* of sets, \(X = \{ A \mid P(A) \}\).
Generalized Union

- Binary union operator: \(A \cup B \)
- \(n \)-ary union:
 \[
 A \cup A_2 \cup \ldots \cup A_n \equiv (((\ldots ((A_1 \cup A_2) \cup \ldots) \cup A_n)
 \]
 (grouping & order is irrelevant)
- “Big U” notation: \(\bigcup_{i=1}^{n} A_i \)
- Or for infinite sets of sets: \(\bigcup_{A \in X} A \)
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2)\cap\ldots)\cap A_n) \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[
 \prod_{i=1}^{n} A_i
 \]
- Or for infinite sets of sets:
 \[
 \prod_{A \in X} A
 \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 - *Sets*: \(0 := \emptyset, 1 := \{0\}, 2 := \{0, 1\}, 3 := \{0, 1, 2\}, \ldots\)
 - *Bit strings*: \(0 := 0, 1 := 1, 2 := 10, 3 := 11, 4 := 100, \ldots\)
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i<n \land b_i=1)$.

E.g. $U=\mathbb{N}$, $S=\{2,3,5,7,11\}$, $B=001101010001$.

In this representation, the set operators “\cup”, “\cap”, “$\overline{\cdot}$” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

• A *set* is a new type of structure, representing an *unordered* collection (group, plurality) of zero or more *distinct* (different) objects.

• *Set theory* deals with operations between, relations among, and statements about sets.

• Sets are ubiquitous in computer software systems.

• *All* of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects (*elements*) that we can *describe* (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be *logically inconsistent*!
 – This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 – \therefore The conjunction of the axioms is a contradiction!
 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

- For sets, we’ll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
 - \{a, b, c\} is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation:* For any proposition $P(x)$ over any universe of discourse, \{\x|P(x)\} is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects \(a, b, \) and \(c \) denote,
 \[\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}. \]

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If \(a = b \), then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}. \)
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal \textit{if and only if} they contain \textit{exactly the same} elements.
- In particular, it does not matter \textit{how the set is defined or denoted}.
- \textbf{For example:} The set \(\{ 1, 2, 3, 4 \} = \{ x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5 \} = \{ x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25 \} \)
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 \(\mathbb{R} = \) The “Real” numbers, such as \(374.1828471929498181917281943125\ldots\)

• “Blackboard Bold” or double-struck font \(\mathbb{N}, \mathbb{Z}, \mathbb{R}\) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

- \(x \in S \) ("x is in S") is the proposition that object \(x \) is an *element* or *member* of set \(S \).
 - *e.g.* \(3 \in \mathbb{N}, \) "a" \(\in \{x \mid x \text{ is a letter of the alphabet}\} \)
 - Can define set equality in terms of \(\in \) relation:
 \[\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T) \]
 "Two sets are equal iff they have all the same members."

- \(x \notin S \) \(\equiv \neg (x \in S) \) "x is not in S"
The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x | \text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.
Subset and Superset Relations

- \(S \subseteq T \) ("\(S \) is a subset of \(T \)") means that every element of \(S \) is also an element of \(T \).
- \(S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T) \)
- \(\emptyset \subseteq S, \ S \subseteq S \).
- \(S \supseteq T \) ("\(S \) is a superset of \(T \)") means \(T \subseteq S \).
- Note \(S = T \iff S \subseteq T \land S \supseteq T \).
- \(S \nsubseteq T \) means \(\neg(S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \)
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \nsubseteq S \). Similar for \(S \subset T \).

Example:

\[
\{1,2\} \subset \{1,2,3\}
\]
Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let $S = \{ x \mid x \subseteq \{ 1, 2, 3 \} \}$
 then $S = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 1, 2 \}, \{ 1, 3 \}, \{ 2, 3 \}, \{ 1, 2, 3 \} \}$
- *Note that* $1 \neq \{ 1 \} \neq \{ \{ 1 \} \}$!!!!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
• E.g., $|\emptyset|=0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$.
• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
• What are some infinite sets we’ve seen? $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
The Power Set Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
 Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, *e.g.* $|P(\mathbb{N})| > |\mathbb{N}|$.
 There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \notin$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 – (That do not have self-consistent properties.)
• These “sets” mathematically cannot exist.
• E.g. let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.

Contrast with sets’ \{\}
Cartesian Products of Sets

• For sets A, B, their Cartesian product
 $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.

• *E.g.* $\{a, b\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$.

René Descartes (1596-1650)
Review of §1.6

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$...
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \setminus.
Start §1.7: The Union Operator

- For sets A, B, their **Union** $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a **superset** of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \(\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}\)
- \(\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}\)

Think “The **United** States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)

CompSci 102 © Michael Frank
The Intersection Operator

• For sets \(A, B \), their *intersection* \(A \cap B \) is the set containing all elements that are simultaneously in \(A \) and \(B \).

• Formally, \(\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \} \).

• Note that \(A \cap B \) is a *subset* of both \(A \) and \(B \) (in fact it is the largest such subset):

\[\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B) \]
Intersection Examples

• \(\{a, b, c\} \cap \{2, 3\} = \emptyset \)
• \(\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\} \)

Think “The **intersection** of University Ave. and W 13th St. is just that part of the road surface that lies on *both* streets.”
Disjointedness

• Two sets A, B are called \textit{disjoint} (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)

• Example: the set of even integers is disjoint with the set of odd integers.

Help, I’ve been disjointed!
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

- Example: How many students are on our class email list? Consider the sets:
 - \(I = \{ \text{students turned in an information sheet} \} \)
 - \(M = \{ \text{students sent the TAs their email address} \} \)

Some students did both! Now, the total number of students is:

\[|I \cup M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A \setminus B$, is the set of all elements that are in A but not B. Formally:
 \[A \setminus B \equiv \{ x \mid x \in A \land x \notin B \} \]
 \[= \{ x \mid \neg(x \in A \rightarrow x \in B) \} \]

• Also called:
 The *complement of B with respect to A*.
Set Difference Examples

- \{1,2,3,4,5,6\} – \{2,3,5,7,9,11\} = \{1,4,6\}

- \(\mathbb{Z} – \mathbb{N}\) = \{\ldots, -1, 0, 1, 2, \ldots\} – \{0, 1, \ldots\} = \{x \mid x\ is\ an\ integer\ but\ not\ a\ nat.\ #\} = \{x \mid x\ is\ a\ negative\ integer\} = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B
 “takes a bite out of A”

A B

Chomp!
Set Complements

• The *universe of discourse* can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U - A$.

• *E.g.,* If $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, \ldots \}$
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- **Identity:** $A \cup \emptyset = A = A \cap U$
- **Domination:** $A \cup U = U$, $A \cap \emptyset = \emptyset$
- **Idempotent:** $A \cup A = A = A \cap A$
- **Double complement:** $(\overline{A}) = A$
- **Commutative:** $A \cup B = B \cup A$, $A \cap B = B \cap A$
- **Associative:** $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. ...
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) - B = A - B\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \cup B)</th>
<th>((A \cup B) - B)</th>
<th>(A - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>A \cup B</th>
<th>(A \cup B) - C</th>
<th>A - C</th>
<th>B - C</th>
<th>(A - C) \cup (B - C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U… Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,...\}, \{x|P(x)\}$…
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \bar{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets, \(X = \{A \mid P(A)\}\).
Generalized Union

- Binary union operator: \(A \cup B \)
- \(n \)-ary union:
 \[A \cup A_2 \cup \ldots \cup A_n \equiv (((A_1 \cup A_2) \cup \ldots) \cup A_n) \]
 (grouping & order is irrelevant)
- “Big U” notation:
 \[\bigcup_{i=1}^{n} A_i \]
- Or for infinite sets of sets:
 \[\bigcup_{A \in X} A \]
Generalized Intersection

• Binary intersection operator: $A \cap B$

• n-ary intersection:
 $A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n)$
 (grouping & order is irrelevant)

• “Big Arch” notation:

$$\bigcap_{i=1}^{n} A_i$$

• Or for infinite sets of sets:

$$\bigcap_{A \in X} A$$
Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.
- *E.g.*, one can represent natural numbers as
 - Sets: $0 := \emptyset$, $1 := \{0\}$, $2 := \{0, 1\}$, $3 := \{0, 1, 2\}$, ...
 - Bit strings: $0 := 0$, $1 := 1$, $2 := 10$, $3 := 11$, $4 := 100$, ...
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where $
forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U=\mathbb{N}$, $S=\{2,3,5,7,11\}$, $B=001101010001$.

In this representation, the set operators “∪”, “∩”, “¬” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects \((\text{elements})\) that we can *describe* (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be *logically inconsistent*!

 – This means, there exist naïve set theory propositions \(p\) such that you can prove that both \(p\) and \(\neg p\) follow logically from the axioms of the theory!

 – \(\therefore\) The conjunction of the axioms is a contradiction!

 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

- For sets, we’ll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
 - $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x | P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently unordered:
 – No matter what objects a, b, and c denote, \{a, b, c\} = \{a, c, b\} = \{b, a, c\} =\{b, c, a\} = \{c, a, b\} = \{c, b, a\}.

• All elements are distinct (unequal); multiple listings make no difference!
 – If a=b, then \{a, b, c\} = \{a, c\} = \{b, c\} =\{a, a, b, a, b, c, c, c, c\}.
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\} \)
Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots \} \] The Natural numbers.
 \[\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \] The Integers.
 \[\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125 \ldots \]
- “Blackboard Bold” or double-struck font (\(\mathbb{N, Z, R}\)) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

• $x \in S$ ("x is in S") is the proposition that object x is an element or member of set S.
 – e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x$ is a letter of the alphabet\}
 – Can define set equality in terms of \in relation:
 $\forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)$
 "Two sets are equal iff they have all the same members."

• $x \notin S :\equiv \neg (x \in S)$ "x is not in S"
The Empty Set

• \emptyset (“null”, “the empty set”) is the unique set that contains no elements whatsoever.
• $\emptyset = \{ \} = \{ x \mid \text{False} \}$
• No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S, \ S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \iff S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$.
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \nsubseteq S \). Similar for \(S \supset T \).

Example:

\[
\{1,2\} \subset \{1,2,3\}
\]

Venn Diagram equivalent of \(S \subset T \)
Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- \(E.g. \) let \(S=\{x \mid x \subseteq \{1,2,3\}\} \)
 then \(S=\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} \)
- Note that \(1 \neq \{1\} \neq \\{\{1\}\} \)!!!!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.

$E.g., |\emptyset| = 0, \quad |\{1,2,3\}| = 3, \quad |\{a,b\}| = 2, \quad |\{\{1,2,3\},\{4,5\}\}| = 2$

• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen?

$\mathbb{N} \mathbb{Z} \mathbb{R}$
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
- Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, *e.g.* $|P(\mathbb{N})| > |\mathbb{N}|$.

There are different sizes of infinite sets!
Review: Set Notations So Far

• Variable objects x, y, z; sets S, T, U.
• Literal set $\{a, b, c\}$ and set-builder $\{x | P(x)\}$.
• \in relational operator, and the empty set \emptyset.
• Set relations $=, \subseteq, \supseteq, \subset, \supset, \emptyset$, etc.
• Venn diagrams.
• Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
• Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set *descriptions* that lead to pathological structures that are not *well-defined*.
 – (That do not have self-consistent properties.)
• These “sets” mathematically *cannot* exist.
• *E.g.* let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, …, n-tuples.

Contrast with sets’ $\{\}$
Cartesian Products of Sets

- For sets A, B, their *Cartesian product* $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.
- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is *not* commutative: *i.e.*, $\neg \forall A B: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review of §1.6

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x\mid P(x)\}$…
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \setminus.
Start §1.7: The Union Operator

- For sets A, B, their **union** $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a **superset** of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}

Think “The **United** States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...).
The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("and") in B.
- Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.
- Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):
 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = \emptyset \)
- \(\{2,4,6\} \cap \{3,4,5\} = \{4\} \)

Think “The \textbf{intersection} of University Ave. and W 13th St. is just that part of the road surface that lies on \textit{both} streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

\[|A \cup B| = |A| + |B| - |A \cap B| \]

• Example: How many students are on our class email list? Consider set M, \[M = \{ s\text{'s sent the TAs their email address}\} \]

Some students did both!

\[|I \cup M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and $B*$, written $A - B$, is the set of all elements that are in A but not B. Formally:

$$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg (x \in A \rightarrow x \in B) \}$$

• Also called:

The *complement of B with respect to $A*$.
Set Difference Examples

• \{1,2,3,4,5,6\} – \{2,3,5,7,9,11\} = \{1,4,6\}

• \(\mathbb{Z} – \mathbb{N}\) = \{… , –1, 0, 1, 2, … \} – \{0, 1, … \} = \{x \mid x \text{ is an integer but not a nat. #}\} = \{x \mid x \text{ is a negative integer}\} = \{… , –3, –2, –1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

- The *universe of discourse* can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U\setminus A$.
- E.g., If $U = \mathbb{N}$, $\{3,5\} = \{0,1,2,4,6,7,\ldots\}$
More on Set Complements

- An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- Identity: \(A \cup \emptyset = A = A \cap U \)
- Domination: \(A \cup U = U \), \(A \cap \emptyset = \emptyset \)
- Idempotent: \(A \cup A = A = A \cap A \)
- Double complement: \(\overline{\overline{A}} = A \)
- Commutative: \(A \cup B = B \cup A \), \(A \cap B = B \cap A \)
- Associative: \(A \cup (B \cup C) = (A \cup B) \cup C \), \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]

\[A \cap B = \overline{A} \cup \overline{B} \]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.

2. Use set builder notation & logical equivalences.

3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- **Part 1:** Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- **Part 2:** Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Prove \((A \cup B)^\complement B = A^\complement B\).
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(A \cup B)</th>
<th>((A \cup B) - C)</th>
<th>(A - C)</th>
<th>(B - C)</th>
<th>((A - C) \cup (B - C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a, b, \ldots\}$, $\{x \mid P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets, \(X=\{A \mid P(A)\}\).
Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
 $\bigcup \bigcup \ldots \bigcup \bigcup \bigcup A_n := \big((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n)\big)$
 (grouping & order is irrelevant)
- “Big U” notation: $\bigcup_{i=1}^{n} A_i$
- Or for infinite sets of sets: $\bigcup_{A \in X} A$
Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary intersection:
 $A_1 \cap A_2 \cap \ldots \cap A_n \equiv (((\ldots((A_1 \cap A_2)\cap \ldots)\cap A_n)$
 (grouping & order is irrelevant)
- “Big Arch” notation: $\bigcap_{i=1}^{n} A_i$
- Or for infinite sets of sets: $\bigcap_{A \in X} A$
Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

- *E.g.*, one can represent natural numbers as
 - Sets: \(0 := \emptyset, 1 := \{0\}, 2 := \{0,1\}, 3 := \{0,1,2\}, \ldots\)
 - Bit strings: \(0 := 0, 1 := 1, 2 := 10, 3 := 11, 4 := 100, \ldots\)
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \Leftrightarrow (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “\cup”, “\cap”, “\neg” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

- **Basic premise:** Any collection or class of objects *(elements)* that we can *describe* (by any means whatsoever) constitutes a set.
- **But, the resulting theory turns out to be logically inconsistent!**
 - This means, there exist naïve set theory propositions \(p \) such that you can prove that both \(p \) and \(\neg p \) follow logically from the axioms of the theory!
 - \(\therefore \) The conjunction of the axioms is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!
- **More sophisticated set theories fix this problem.**
Basic notations for sets

• For sets, we’ll use variables S, T, U, \ldots

• We can denote a set S in writing by listing all of its elements in curly braces:

 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.

• *Set builder notation:* For any proposition $P(x)$ over any universe of discourse,

 $\{x | P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects a, b, and c denote,
 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} =
 \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If a=b, then \{a, b, c\} = \{a, c\} = \{b, c\} =
 \{a, a, b, a, b, c, c, c, c\}.
 – This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\} \).
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 \(\mathbb{R} = \) The “Real” numbers, such as 374.182847192948181917281943125…

• “Blackboard Bold” or double-struck font (\(\mathbb{N}, \mathbb{Z}, \mathbb{R} \)) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

• $x \in S$ ("x is in S") is the proposition that object x is an element or member of set S.
 – e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x$ is a letter of the alphabet$\}$
 – Can define set equality in terms of \in relation:
 $\forall S,T: S=T \iff (\forall x: x \in S \iff x \in T)$
 “Two sets are equal iff they have all the same members.”

• $x \notin S : \equiv \neg (x \in S)$ "x is not in S"
The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x \mid \text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \iff \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S, S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \iff S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \not\subset S \). Similar for \(S \subsetneq T \).

Example:
\[
\{1,2\} \subset \{1,2,3\}
\]

Venn Diagram equivalent of \(S \subset T \)
Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let $S = \{x \mid x \subseteq \{1,2,3\}\}$
 then $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\}$!!!!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.

• E.g., $|\emptyset| = 0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$.

• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen? $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
The *Power Set* Operation

- The *power set* \(P(S) \) of a set \(S \) is the set of all subsets of \(S \).
 \[P(S) \equiv \{ x \mid x \subseteq S \}. \]
- *E.g.* \(P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \} \).
- Sometimes \(P(S) \) is written \(2^S \).

 Note that for finite \(S \), \(|P(S)| = 2^{|S|} \).
- It turns out \(\forall S: |P(S)| > |S| \), *e.g.* \(|P(\mathbb{N})| > |\mathbb{N}| \).

There are different sizes of infinite sets!
Review: Set Notations So Far

• Variable objects \(x, y, z \); sets \(S, T, U \).
• Literal set \(\{a, b, c\} \) and set-builder \(\{x \mid P(x)\} \).
• \(\in \) relational operator, and the empty set \(\emptyset \).
• Set relations =, \(\subseteq, \supseteq, \subset, \supset, \notin \), etc.
• Venn diagrams.
• Cardinality \(|S| \) and infinite sets \(\mathbb{N}, \mathbb{Z}, \mathbb{R} \).
• Power sets \(P(S) \).
Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined. (That do not have self-consistent properties.)
- These “sets” mathematically cannot exist.
- \(E.g. \) let \(S = \{ x \mid x \not\in x \} \). Is \(S \in S \)?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don’t worry about it!
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.
Cartesian Products of Sets

• For sets A, B, their *Cartesian product* $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.

• *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is *not* commutative: i.e., $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...

René Descartes (1596-1650)
Review of §1.6

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S=T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \setminus.
Start §1.7: The Union Operator

• For sets \(A, B \), their **union** \(A \cup B \) is the set containing all elements that are either in \(A \), or (“\(\lor \)”) in \(B \) (or, of course, in both).

• Formally, \(\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \} \).

• Note that \(A \cup B \) is a **superset** of both \(A \) and \(B \) (in fact, it is the smallest such superset):

\[
\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)
\]
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)

CompSci 102 © Michael Frank
The Intersection Operator

• For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\(\land\)") in B.
• Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.
• Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset): $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$.
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = \emptyset \)
- \(\{2,4,6\} \cap \{3,4,5\} = \{4\} \)

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

- Subtract out items in intersection, to compensate for double-counting them!

\[|A \cup B| = |A| + |B| - |A \cap B| \]

- Example: How many students are on our class email list? Consider \(E \), \(M \), \(I \), \(M \)

\[I = \{ \text{students turned in an information sheet} \} \]
\[M = \{ \text{students sent the TAs their email address} \} \]

\[|M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

$$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg (x \in A \rightarrow x \in B) \}$$

• Also called:

 The *complement of B with respect to A*.
Set Difference Examples

- \(\{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \{1,4,6\} \)

- \(\mathbb{Z} - \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\} = \{x \mid x \text{ is an integer but not a nat. }\} = \{x \mid x \text{ is a negative integer}\} = \{\ldots, -3, -2, -1\} \)
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”

Set $A - B$

Set A

Set B

Chomp!
Set Complements

- The *universe of discourse* can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, *i.e.*, it is $U−A$.
- *E.g.*, If $U=\mathbb{N}$, $\{3,5\} = \{0,1,2,4,6,7,...\}$
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \not\in A \}$$
Set Identities

- **Identity:** \(A \cup \emptyset = A = A \cap U \)
- **Domination:** \(A \cup U = U, \ A \cap \emptyset = \emptyset \)
- **Idempotent:** \(A \cup A = A = A \cap A \)
- **Double complement:** \(\overline{\overline{A}} = A \)
- **Commutative:** \(A \cup B = B \cup A, \ A \cap B = B \cap A \)
- **Associative:** \(A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]

\[A \cap B = \overline{A} \cup \overline{B} \]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

• Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 – Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 – We know that $x \in A$, and either $x \in B$ or $x \in C$.
 • Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 • Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

• Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B) \neg B = A \neg B\).

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \cup B)</th>
<th>((A \cup B) \neg B)</th>
<th>(A \neg B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(A \cup B)</th>
<th>((A \cup B) - C)</th>
<th>(A - C)</th>
<th>(B - C)</th>
<th>((A - C) \cup (B - C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets, \(X=\{A \mid P(A)\}\).
Generalized Union

- Binary union operator: \(A \cup B \)
- \(n \)-ary union:
 \[A \cup A_2 \cup \ldots \cup A_n \equiv (((A_1 \cup A_2) \cup \ldots) \cup A_n) \]
 (grouping & order is irrelevant)
- “Big U” notation:
 \[\bigcup_{i=1}^{n} A_i \]
- Or for infinite sets of sets:
 \[\bigcup_{A \in X} A \]
Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary intersection:
 $A_1 \cap A_2 \cap \ldots \cap A_n \equiv (((\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n)$
 (grouping & order is irrelevant)
- “Big Arch” notation: $\bigcap_{i=1}^{n} A_i$
- Or for infinite sets of sets:
 $\bigcap_{A \in X} A$
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as

 – Sets: \(0 := \emptyset, 1 := \{0\}, 2 := \{0,1\}, 3 := \{0,1,2\}, \ldots\)

 – Bit strings:
 \[0 := 0, 1 := 1, 2 := 10, 3 := 11, 4 := 100, \ldots\]
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B = b_1 b_2 \ldots b_n$ where $\forall i: x_i \in S \iff (i < n \land b_i = 1)$.

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “∪”, “∩”, “¯” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be *logically inconsistent*!
 – This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
 – \therefore The conjunction of the axioms is a contradiction!
 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

• For sets, we’ll use variables S, T, U, \ldots
• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.
• Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x|P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• Sets are inherently *unordered*:
 – No matter what objects \(a, b, \) and \(c\) denote,
 \[\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.\]

• All elements are *distinct* (unequal); multiple listings make no difference!
 – If \(a=b\), then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}\).
 – This set contains (at most) 2 elements!
Definition of Set Equality

• Two sets are declared to be equal if and only if they contain exactly the same elements.
• In particular, it does not matter how the set is defined or denoted.
• For example: The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } x>0 \text{ and } x<25 \} \)
Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:
 \[N = \{0, 1, 2, \ldots\} \quad \text{The Natural numbers.} \]
 \[Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \quad \text{The Integers.} \]
 \[R = \text{The “Real” numbers, such as 374.1828471929498181917281943125…} \]
- “Blackboard Bold” or double-struck font (*N*, *Z*, *R*) is also often used for these special number sets.
- Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams

John Venn
1834-1923
Basic Set Relations: Member of

• $x \in S$ ("x is in S") is the proposition that object x is an element or member of set S.
 - e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x$ is a letter of the alphabet\}
 - Can define set equality in terms of \in relation: $
 \forall S,T: S = T \iff (\forall x: x \in S \iff x \in T)$
 “Two sets are equal iff they have all the same members.”

• $x \notin S :\equiv \neg(x \in S)$ "x is not in S"
The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{ \} = \{ x | False \}$
- No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S$, $S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \Leftrightarrow S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg(S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \nsubseteq S$. Similar for $S \subsetneq T$.

Example:

$\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$
Sets Are Objects, Too!

• The objects that are elements of a set may themselves be sets.

• *E.g.* let \(S = \{ x \mid x \subseteq \{1,2,3\} \} \) then \(S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \} \)

• Note that \(1 \neq \{1\} \neq \{\{1\}\} \) !!!!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.

• E.g., $|\emptyset|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$.

• If $|S|\in\mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen?

$\mathbb{N} \not\in \mathbb{R}$
The **Power Set** Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$.
- Sometimes $P(S)$ is written 2^S.
 - Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, e.g. $|P(\mathbb{N})| > |\mathbb{N}|$.
 - *There are different sizes of infinite sets!*
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set $\{a, b, c\}$ and set-builder $\{x|P(x)\}$.
- \in relational operator, and the empty set \emptyset.
- Set relations $=$, \subseteq, \supseteq, \subset, \supset, \emptyset, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 – (That do not have self-consistent properties.)

• These “sets” mathematically cannot exist.

• E.g. let $S = \{ x \mid x \notin x \}$. Is $S \in S$?

• Therefore, consistent set theories must restrict the language that can be used to describe sets.

• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.
Cartesian Products of Sets

• For sets A, B, their **Cartesian product**
 \[A \times B \equiv \{ (a, b) \mid a \in A \land b \in B \} \].

• *E.g.* $\{a, b\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$

• Note that for finite A, B, \[|A \times B| = |A||B| \].

• Note that the Cartesian product is *not* commutative: *i.e.*, \(\neg \forall A B: A \times B = B \times A \).

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...

René Descartes (1596-1650)
Review of §1.6

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \neg.

CompSci 102 © Michael Frank
Start §1.7: The Union Operator

- For sets A, B, their **Union** $A \cup B$ is the set containing all elements that are either in A, or (“\lor”) in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a **superset** of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\$\cap\$") in B.
- Formally, $\forall A, B: A \cap B = \{ x \mid x \in A \land x \in B \}$.
- Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset): $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- \(\{a, b, c\} \cap \{2, 3\} = \emptyset \)
- \(\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\} \)

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called **disjoint** (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

Subtract out items in intersection to compensate for double-counting them!

\[|A \cup B| = |A| + |B| - |A \cap B| \]

Example: How many students are on our class email list? Consider \(E \) = \(I \cup M \), where \(I = \{ s \text{ sent the TAs their email address} \} \) and \(M = \{ s \text{ turned in an information sheet} \} \).

Subtract out \(|I \cap M| \) to compensate for double-counting the students who both sent their email address and turned in their information sheet.

\[|E| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the *difference of A and B*, written $A - B$, is the set of all elements that are in A but not B. Formally:

$$A - B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg(x \in A \rightarrow x \in B) \}$$

• Also called:

The *complement of B with respect to A*.
Set Difference Examples

- \{1,2,3,4,5,6\} \setminus \{2,3,5,7,9,11\} = \{1,4,6\}
- \mathbb{Z} \setminus \mathbb{N} = \{-\ldots, -1, 0, 1, 2, \ldots\} \setminus \{0, 1, \ldots\} = \{x \mid x \text{ is an integer but not a nat.}\} = \{x \mid x \text{ is a negative integer}\} = \{-\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- \(A \setminus B \) is what’s left after \(B \) “takes a bite out of \(A \)”

\[
\begin{align*}
\text{Set } A & \quad \text{Set } B \\
A \setminus B & \quad \text{Chomp!}
\end{align*}
\]
Set Complements

• The *universe of discourse* can itself be considered a set, call it U.

• When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \bar{A}, is the complement of A w.r.t. U, *i.e.*, it is $U - A$.

• *E.g.*, if $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, \ldots \}$
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- Identity: $A \cup \emptyset = A = A \cap U$
- Domination: $A \cup U = U$, $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement: $(\overline{A}) = A$
- Commutative: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[
\overline{A \cup B} = \overline{A} \cap \overline{B} \\
\overline{A \cap B} = \overline{A} \cup \overline{B}
\]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

- Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use “1” to indicate membership in the derived set, “0” for non-membership.
- Prove equivalence with identical columns.
Prove \((A \cup B) \overline{B} = A \overline{B}\).

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \cup B)</th>
<th>((A \cup B) \overline{B})</th>
<th>(A \overline{B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A \cup B</td>
<td>(A \cup B) - C</td>
<td>A - C</td>
<td>B - C</td>
<td>(A - C) \cup (B - C)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Review of §1.6-1.7

- Sets S, T, U... Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S=T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A,B)\) to operating on sequences of sets \((A_1,\ldots,A_n)\), or even on unordered sets of sets,

\[X = \{ A \mid P(A) \} \.]
Generalized Union

- **Binary union operator**: $A \cup B$
- **n-ary union**: $A \cup A_2 \cup \ldots \cup A_n \equiv (((A_1 \cup A_2) \cup \ldots) \cup A_n)$ (grouping & order is irrelevant)
- **“Big U” notation**: $\bigcup_{i=1}^{n} A_i$
- **Or for infinite sets of sets**: $\bigcup_{A \in X} A$
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[
 A_1 \cap A_2 \cap \ldots \cap A_n \equiv (\ldots ((A_1 \cap A_2) \cap \ldots) \cap A_n)
 \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[
 \bigcap_{i=1}^{n} A_i
 \]
- Or for infinite sets of sets:
 \[
 \bigcap_{A \in X} A
 \]
Representations

• A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.

• E.g., one can represent natural numbers as
 – Sets: $0:=\emptyset$, $1:=\{0\}$, $2:=\{0,1\}$, $3:=\{0,1,2\}$, ...
 – Bit strings:
 $0:=0$, $1:=1$, $2:=10$, $3:=11$, $4:=100$, ...

CompSci 102 © Michael Frank
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1 b_2 \ldots b_n$ where

$$\forall i: x_i \in S \iff (i < n \land b_i = 1).$$

E.g. $U = \mathbb{N}$, $S = \{2, 3, 5, 7, 11\}$, $B = 001101010001$.

In this representation, the set operators “∪”, “∩”, “¬” are implemented directly by bitwise OR, AND, NOT!
Today’s topics

• Sets
 – Indirect, by cases, and direct
 – Rules of logical inference
 – Correct & fallacious proofs

• Reading: Sections 1.6-1.7

• Upcoming
 – Functions
Introduction to Set Theory (§1.6)

- A *set* is a new type of structure, representing an *unordered* collection (group, plurality) of zero or more *distinct* (different) objects.
- *Set theory deals with operations between, relations among, and statements about sets.*
- Sets are ubiquitous in computer software systems.
- *All* of mathematics can be defined in terms of some form of set theory (using predicate logic).
Naïve set theory

• **Basic premise:** Any collection or class of objects (*elements*) that we can *describe* (by any means whatsoever) constitutes a set.

• But, the resulting theory turns out to be *logically inconsistent*!

 – This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!

 – \therefore The conjunction of the axioms is a contradiction!

 – This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) “proved” by contradiction!

• More sophisticated set theories fix this problem.
Basic notations for sets

- For sets, we’ll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
 - \{a, b, c\} is the set of whatever 3 objects are denoted by a, b, c.
- *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x\mid P(x)\}$ is the set of all x such that $P(x)$.
Basic properties of sets

• **Sets are inherently unordered:**

 – No matter what objects a, b, and c denote,

 \{a, b, c\} = \{a, c, b\} = \{b, a, c\} =

 \{b, c, a\} = \{c, a, b\} = \{c, b, a\}.

• **All elements are distinct** (unequal); multiple listings make no difference!

 – If a=b, then \{a, b, c\} = \{a, c\} = \{b, c\} =

 \{a, a, b, a, b, c, c, c, c\}.

 – This set contains (at most) 2 elements!
Definition of Set Equality

• Two sets are declared to be equal \textit{if and only if} they contain \textit{exactly the same} elements.

• In particular, it does not matter \textit{how the set is defined or denoted}.

• \textbf{For example:} The set \{1, 2, 3, 4\} =
\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} =
\{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\}
Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, without end, unending).

• Symbols for some special infinite sets:
 \(\mathbb{N} = \{0, 1, 2, \ldots\} \) The Natural numbers.
 \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \) The Integers.
 \(\mathbb{R} = \) The “Real” numbers, such as 374.1828471929498181917281943125…

• “Blackboard Bold” or double-struck font \((\mathbb{N}, \mathbb{Z}, \mathbb{R}) \) is also often used for these special number sets.

• Infinite sets come in different sizes!

More on this after module #4 (functions).
Venn Diagrams
Basic Set Relations: Member of

- \(x \in S \) ("\(x \) is in \(S \)"") is the proposition that object \(x \) is an element or member of set \(S \).
 - e.g. \(3 \in \mathbb{N} \), "\(a \)" \(\in \{x \mid x \text{ is a letter of the alphabet}\} \)
 - Can define set equality in terms of \(\in \) relation:
 \[
 \forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)
 \]
 "Two sets are equal iff they have all the same members."

- \(x \notin S \) \(\equiv \neg(x \in S) \) "\(x \) is not in \(S \)"

The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x | \text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x: x \in \emptyset$.
Subset and Superset Relations

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \leftrightarrow \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S$, $S \subseteq S$.
- $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$.
- Note $S = T \leftrightarrow S \subseteq T \land S \supseteq T$.
- $S \nsubseteq T$ means $\neg(S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)"") means that \(S \subseteq T \) but \(T \nsubseteq S \). Similar for \(S \supset T \).

Example:
\[
\{1,2\} \subset \{1,2,3\}
\]

Venn Diagram equivalent of \(S \subset T \)
Sets Are Objects, Too!

• The objects that are elements of a set may themselves be sets.

• *E.g.* let $S=\{x \mid x \subseteq \{1,2,3\}\}$
then $S=\{\emptyset,$
\[
\{1\}, \{2\}, \{3\}, \\
\{1,2\}, \{1,3\}, \{2,3\}, \\
\{1,2,3\}\}$

• Note that $1 \not= \{1\} \not= \{\{1\}\}$!!!!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.

• E.g., $|\emptyset| = 0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$.

• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen? $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
The *Power Set* Operation

- The *power set* $P(S)$ of a set S is the set of all subsets of S. $P(S) \equiv \{ x \mid x \subseteq S \}$.
- *E.g.* $P(\{a,b\}) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$.
- Sometimes $P(S)$ is written 2^S.
- Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out $\forall S: |P(S)| > |S|$, *e.g.* $|P(\mathbb{N})| > |\mathbb{N}|$. *There are different sizes of infinite sets!*
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x|P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \not\in$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets N, Z, R.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

• There are some naïve set descriptions that lead to pathological structures that are not well-defined.
 – (That do not have self-consistent properties.)
• These “sets” mathematically cannot exist.
• E.g. let $S = \{ x \mid x \not\in x \}$. Is $S \in S$?
• Therefore, consistent set theories must restrict the language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970
Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n). Its first element is a_1, etc.
- Note that $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.

Contrast with sets’ {}
Cartesian Products of Sets

- For sets A, B, their *Cartesian product* $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.
- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is *not commutative*: *i.e.*, $\forall A B: A \times B \neq B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n...$
Review of §1.6

• Sets S, T, U… Special sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
• Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
• Set relation operators $x\in S$, $S\subseteq T$, $S\supseteq T$, $S=T$, $S\subset T$, $S\supset T$. (These form propositions.)
• Finite vs. infinite sets.
• Set operations $|S|$, $P(S)$, $S\times T$.
• Next up: §1.5: More set ops: \cup, \cap, \neg.
For sets A, B, their $\text{Union } A \cup B$ is the set containing all elements that are either in A, or (“\lor”) in B (or, of course, in both).

Formally, $\forall A, B: A \cup B = \{ x | x \in A \lor x \in B \}$.

Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$
Union Examples

- \(\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\} \)

- \(\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\} \)

Think “The United States of America includes every person who worked in any U.S. state last year.” (This is how the IRS sees it...)
The Intersection Operator

• For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.

• Formally, $\forall A, B: A \cap B = \{x \mid x \in A \land x \in B\}$.

• Note that $A \cap B$ is a *subset* of both A and B (in fact it is the largest such subset):

 $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
Intersection Examples

- \(\{a, b, c\} \cap \{2, 3\} = \emptyset \)
- \(\{2, 4, 6\} \cap \{3, 4, 5\} = \{4\} \)

Think “The intersection of University Ave. and W 13th St. is just that part of the road surface that lies on both streets.”
Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)
- Example: the set of even integers is disjoint with the set of odd integers.

Help, I’ve been disjointed!
Inclusion-Exclusion Principle

- Subtract out items in intersection, to compensate for double-counting them!
- Example: How many students are on our class email list? Consider M, $I = \{s \in S | s$ turned in an information sheet\}$, $M = \{s \in S | s$ sent the TAs their email address\}$
- Some students did both!
- \[|I \cup M| = |I| + |M| - |I \cap M| \]
Set Difference

• For sets A, B, the **difference of A and B**, written $A \setminus B$, is the set of all elements that are in A but not B. Formally:

$$A \setminus B \equiv \{ x \mid x \in A \land x \notin B \}$$

$$= \{ x \mid \neg(x \in A \rightarrow x \in B) \}$$

• Also called:

 The **complement of B with respect to A**.
Set Difference Examples

- \{1,2,3,4,5,6\} \setminus \{2,3,5,7,9,11\} = \{1,4,6\}

- \mathbb{Z} \setminus \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} \setminus \{0, 1, \ldots\}
 = \{x \mid x \text{ is an integer but not a nat. \#}\}
 = \{x \mid x \text{ is a negative integer}\}
 = \{\ldots, -3, -2, -1\}
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”
Set Complements

- The *universe of discourse* can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U - A$.
- *E.g.*, If $U = \mathbb{N}$, $\{3, 5\} = \{0, 1, 2, 4, 6, 7, \ldots \}$
More on Set Complements

• An equivalent definition, when U is clear:

$$\overline{A} = \{ x \mid x \notin A \}$$
Set Identities

- **Identity:** \(A \cup \emptyset = A = A \cap U \)
- **Domination:** \(A \cup U = U \) , \(A \cap \emptyset = \emptyset \)
- **Idempotent:** \(A \cup A = A = A \cap A \)
- **Double complement:** \(\overline{\overline{A}} = A \)
- **Commutative:** \(A \cup B = B \cup A \) , \(A \cap B = B \cap A \)
- ** Associative:** \(A \cup (B \cup C) = (A \cup B) \cup C \) ,
 \(A \cap (B \cap C) = (A \cap B) \cap C \)
DeMorgan’s Law for Sets

- Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]

\[A \cap B = \overline{A} \cup \overline{B} \]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \).

- Part 1: Show \(A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \).
 - Assume \(x \in A \cap (B \cup C) \), & show \(x \in (A \cap B) \cup (A \cap C) \).
 - We know that \(x \in A \), and either \(x \in B \) or \(x \in C \).
 - Case 1: \(x \in B \). Then \(x \in A \cap B \), so \(x \in (A \cap B) \cup (A \cap C) \).
 - Case 2: \(x \in C \). Then \(x \in A \cap C \), so \(x \in (A \cap B) \cup (A \cap C) \).
 - Therefore, \(x \in (A \cap B) \cup (A \cap C) \).
 - Therefore, \(A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \).

- Part 2: Show \((A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C) \). …
Method 3: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships in constituent sets.
• Use “1” to indicate membership in the derived set, “0” for non-membership.
• Prove equivalence with identical columns.
Membership Table Example

Prove \((A \cup B)^{-}B = A^{-}B\).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Membership Table Exercise

Prove \((A \cup B) - C = (A - C) \cup (B - C)\).

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(A \cup B\) | \((A \cup B) - C\) | \(A - C\) | \(B - C\) | \((A - C) \cup (B - C)\)
Review of §1.6-1.7

- Sets S, T, U… Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$…
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
- Operations $|S|$, $P(S)$, \times, \cup, \cap, $-$, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.
Generalized Unions & Intersections

- Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets, \(X = \{A \mid P(A)\}\).
Generalized Union

- **Binary union operator:** \(A \cup B \)
- **\(n \)-ary union:**
 \[A \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n)) \]
 (grouping & order is irrelevant)
- **“Big U” notation:**
 \[\bigcup_{i=1}^{n} A_i \]
- **Or for infinite sets of sets:**
 \[\bigcup_{A \in X} A \]
Generalized Intersection

- Binary intersection operator: \(A \cap B \)
- \(n \)-ary intersection:
 \[A_1 \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n) \]
 (grouping & order is irrelevant)
- “Big Arch” notation:
 \[\bigcap_{i=1}^{n} A_i \]
- Or for infinite sets of sets:
 \[\bigcap_{A \in X} A \]
Representations

• A frequent theme of this course will be methods of *representing* one discrete structure using another discrete structure of a different type.

• *E.g.*, one can represent natural numbers as
 – Sets: $0:=\emptyset$, $1:=\{0\}$, $2:=\{0,1\}$, $3:=\{0,1,2\}$, …
 – Bit strings: $0:=0$, $1:=1$, $2:=10$, $3:=11$, $4:=100$, …
Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_1, x_2, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1b_2\ldots b_n$ where
\[
\forall i: x_i \in S \iff (i < n \land b_i = 1).
\]

E.g. $U=\mathbb{N}$, $S=\{2,3,5,7,11\}$, $B=001101010001$.

In this representation, the set operators “\cup”, “\cap”, “\neg” are implemented directly by bitwise OR, AND, NOT!