Text Compression

- Input: String S
- Output: String S′
 - Shorter
 - S can be reconstructed from S′

Text Compression: Examples

```
<table>
<thead>
<tr>
<th>Symbol</th>
<th>ASCII</th>
<th>Fixed</th>
<th>Var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>01100001</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>b</td>
<td>01100010</td>
<td>001</td>
<td>11</td>
</tr>
<tr>
<td>c</td>
<td>01100011</td>
<td>010</td>
<td>01</td>
</tr>
<tr>
<td>d</td>
<td>01100100</td>
<td>011</td>
<td>001</td>
</tr>
<tr>
<td>e</td>
<td>01100101</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>
```

“abcde” in the different formats

- ASCII: 01010011000100d0101001100011c1010001100101e1100101100010b00000001100001
- Unicode: 01000010100001000001000100000001100001

Huffman coding: go go gophers

- ASCII (7 bits) 3 bits Huffman
- Encoding uses tree:
 - 0 left/1 right
 - How many bits? 37!!
 - Savings? Worth it?

Huffman Coding

- D.A. Huffman in early 1950’s
- Before compressing data, analyze the input stream
- Represent data using variable length codes
- Variable length codes though Prefix codes
 - Each letter is assigned a codeword
 - Codeword is for a given letter is produced by traversing the Huffman tree
 - Property: No codeword produced is the prefix of another
 - Letters appearing frequently have short codewords, while those that appear rarely have longer ones
- Huffman coding is an optimal per-character coding method
Building a Huffman tree

- Begin with a forest of single-node trees (leaves)
 - Each node/tree/leaf is weighted with character count
 - Node stores two values: character and count
 - There are n nodes in forest, n is size of alphabet?

- Repeat until there is only one node left: root of tree
 - Remove two minimally weighted trees from forest
 - Create new tree with minimal trees as children,
 - New tree root's weight: sum of children (character ignored)

- Does this process terminate? How do we get minimal trees?
 - Remove minimal trees, hmmm......

Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

1 I 6 E 5 N 4 C 1 F 1 P 2 U 2 R 2 L 2 D 2 G 3 T 3 O 3 B 3 A 4 M 4 S

Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

2 1 1
F C

Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

3 1 1
C F

Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

2 1 1
P U
Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

CompSci 100

21.13

21.14

21.15

21.16
Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
Building a tree

“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”

Encoding

1. Count occurrence of all occurring characters $O(\ N\)$
2. Build priority queue $O(\ A\)$
3. Build Huffman tree $O(A\ \log\ A)$
4. Create Table of codes from tree $O(A\ \log\ A)$
5. Write Huffman tree and coded data to file $O(\ N\)$
Properties of Huffman coding

- Want to minimize weighted path length $L(T)$ of tree T
- $L(T) = \sum_{i \in \text{Leaf}(T)} d_i w_i$
 - w_i is the weight or count of each codeword i
 - d_i is the leaf corresponding to codeword i
- How do we calculate character (codeword) frequencies?
- Huffman coding creates pretty full bushy trees?
 - When would it produce a “bad” tree?
- How do we produce coded compressed data from input efficiently?

Writing code out to file

- How do we go from characters to encodings?
 - Build Huffman tree
 - Root-to-leaf path generates encoding
- Need way of writing bits out to file
 - Platform dependent?
 - Complicated to write bits and read in same ordering
- See BitInputStream and BitOutputStream classes
 - Depend on each other, bit ordering preserved
- How do we know bits come from compressed file?
 - Store a magic number

Decoding a message

Decoding a message
Decoding a message

100000100001001101

00000100001001101

0000100001001101

000100001001101

CompSci 100
Decoding a message

0010001001101

10001001101

10001001101

00001001101

G

GO
Decoding a message

1. Read in tree data $O(\)$
2. Decode bit string with tree $O(\)$
Huffman coding: *go go gophers*

- **ASCII**: 3 bits
- **Huffman**:
 - *g*: 103 1100111 000 ??
 - *o*: 111 1101111 001 ??
 - *p*: 112 1110000 010 ??
 - *h*: 104 1101000 011
 - *e*: 101 1100101 100
 - *r*: 114 1110010 101
 - *s*: 115 1110011 110
 - *sp*: 32 1000000 111

- Choose two smallest weights
 - Combine nodes + weights
 - Repeat
 - Priority queue?
- **Encoding uses tree:**
 - 0 left/1 right
 - How many bits?

```
Huffman Tree 2

- "A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS"
  - E.g. "A SIMPLE" ⇔ "1010110100010100111011100000"
```

```
Huffman Tree 2

- "A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS"
  - E.g. "A SIMPLE" ⇔ "1010110100010100111011100000"
```
A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS

- E.g. “A SIMPLE” ↔ “10101101001000101001110011100000”
“A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
- E.g. “A SIMPLE” ⇔ “10101101000101001110011100000”

Other methods
- Adaptive Huffman coding
- Lempel-Ziv algorithms
 - Build the coding table on the fly while reading document
 - Coding table changes dynamically
 - Protocol between encoder and decoder so that everyone is always using the right coding scheme
 - Works well in practice (compress, gzip, etc.)
- More complicated methods
 - Burrows-Wheeler (bunzip2)
 - PPM statistical methods