Why is SLAM Hard: Ambiguity

Where This is Going

• New DP-SLAM 2.0 algorithm
 – Fast maintenance of multiple map hypotheses
 – Linear run time in all relevant parameters
• New model of laser penetration
• Results:
 – Good asymptotics
 (mapping no more expensive than localization!)
 – Very accurate & detailed maps

Outline

• Digression: Tracking
 • Kalman Filter SLAM
 • Full map slam
 • DP-SLAM

Tracking

• Example: Radar
• Hidden state variable(s)
• Dynamic model
• Noisy observations
• Problem: Infer hidden variables

Tracking Algorithm Outline

• Inputs:
 – Initial state estimate
 – Motion model, observation model
• Main loop:
 – Project state estimate forward using motion model
 – Make observations
 – Update state estimate based on observations
Tracking Example

- Motion model
- Measurement
- Updated state

State Representation

- Assuming:
 - Gaussian initial state
 - Linear dynamics
 - Linear observation model
 - Gaussian noise
- Posterior remains Gaussian
- Closed form solution – Kalman Filter
- See page by Greg Welch and Gary Bishop

Monte Carlo Approximation (Particle Filter)

- Motion model
- Measurement
- Resample
- Updated state

Particle Filter

- No assumptions about
 - Motion, observation model
 - Form of density
- Simulate → Weight → Resample
- Samples (particles) are fixed in number
- Nota bene: Resampling allocates particles to highest probability areas
- Works well w/concentrated posterior

Outline

- Digression: Tracking
 - Kalman Filter SLAM
 - Full map SLAM
 - DP-SLAM

SLAM as Tracking

- Hidden state:
 - Robot position
 - Position of distinctive landmarks
- Motion model:
 - Robot control input
 - Landmarks are stationary
- Observations:
 - Measured distances from landmarks
SLAM Pseudocode

- Project robot state distribution forward (robot motion model)
- Observe environment (laser scans)
- Update robot state by P(O|S)
- Update map (add new objects)
- Repeat

Kalman Filter SLAM Properties

- Assumes:
 - Linear motion model
 - Gaussian noise
- Produces
 - Robot position estimates
 - Landmark position estimates
 - Means and full covariance matrix

KF SLAM Example

Video courtesy of Mark Paskin

Problems with KF SLAM

- Reality is not linear Gaussian
- Produces only a map of landmarks
- n landmarks: $O(n^2)$ cost
- Data association problem

Fixes for KF SLAM

- Thin junction tree filters (Paskin)
 - Uses approximate Bayes net inference techniques
 - Fast, adaptive approximation
- FastSLAM (Montemerlo et al.)
 - Sampling robot positions
 - KF for landmark positions
 - Benefits of sampling:
 - Fixes unrealistic linear-Gaussian assumption
 - Landmark positions become independent
 - Linear cost in no. of landmarks seen

Outline

- Digression: Tracking
- Kalman Filter SLAM
- Full map SLAM
- DP-SLAM
Building a Dense Map

Challenges of Full Maps

- Dense concentration of features
 - Makes KF impractical
 - Complicates data association
- Naive approaches fail
 - Ignoring uncertainty = accumulating error in maps
 - Confronting uncertainty = computational problems (solved by DP-SLAM)

Ignoring Uncertainty

- Use a very accurate sensor (laser)
- Maintain PF or KF over robot positions
- Deterministically update map
 - Estimate most likely robot position
 - Insert new observations into map
 - Hope for the best...

Single Map SLAM

Map Patching

- Exploit topology for consistent maps
 - Loop closing [Lu & Milos ’97, Gutmann & Konolige ‘00]
 - Consistency provides accuracy
- Heuristic map correction
- Good maps achieved at intervals
 - Intermediate maps can be poor
 - Removes *Simultaneous* from SLAM

Outline

- Digression: Tracking
- Kalman Filter SLAM
- Full map SLAM
- DP-SLAM
DP-SLAM Goals

- Best of both worlds
 - Soundness/robustness of probabilistic methods
 - Full map detail
- Speed/Efficiency
 - Linear in observation size
 - Linear in number of particles
 - Single pass over sensor data (no map patching required)
- Generality
 - No assumptions about the environment
- Accuracy
 - Full maps without accumulating error

Map Maintenance Challenges

- Want to filter entire, joint pose-map states
- Dense maps are big
- 100’s or 1000’s of particles are needed
- One full map per particle requires
 - $O(MP)$ work (resampling)
 - Gigabytes of memory movement
- Anecdotal reports: Tried, but impractical

Distributed Particle Mapping

- Exploit sampling/resampling steps of PF
 - Common ancestry = Redundant map sections
- History representation: Ancestry Tree
 - Leaves correspond to current particles
- New map Representation
 - Store multiple maps in a single grid

Ancestry Trees
Ancestry Trees

Ancestors with no children can be removed

Ancestry Trees

Ancestors with only one child can be merged
Ancestry Trees

- Maintain a minimal tree (improves complexity)
 - Exactly P leaves
 - Branching factor at least 2
 - Depth no more than P
- Explicitly store the ancestry info
 - Node = Ancestor particle w/ unique ID
 - Stores parent link, grid squares updated (list)

Naïve Map Representation

- Map is an occupancy grid
- One full map per particle!

DP-Mapping

- Each ancestry node stores
 - “Vector” of updated grid squares
- Each grid square stores:
 - “Vector” of ancestry nodes that have updated the square
 - Associated observations
- Good News: Minimal redundancy
- Bad News: Sacrifices constant time access to map

SLAM Pseudocode

- Project robot state distribution forward (robot motion model)
- Observe environment (laser scans)
- Update robot state by $P(O|S)$
- Update map (add new objects)
- Repeat

Localization Complexity

- P Particles
- Must compute $P(O|S)$ for each particle
- For each laser cast of the current particle
 - Trace laser cast through grid
 - For each grid square return map occupancy
 - Laser scan probability = f (map occupancy)
 - Trivial for explicit map representation
 - Observation size A: $O(AP)$

DP-SLAM Localization

- For DP Maps
 - Must implicitly reconstruct each particle’s map
 - For each ancestor of current particle:
 - Check if node has updated current square
 - Return associated occupancy
 - Naïve Solution:
 - For each P on frontier of ancestry tree: $O(P)$
 - For each square A visited tracing laser casts: $O(A)$
 - For each node D in ancestry tree on path from P to root: $O(P)$
 - Check if node D has updated A: $O(P)$
 - $O(AP^3)$ complexity
A Smarter Solution

- Assign particles sequential IDs
- Store observation vectors for each grid square as a balanced tree keyed on IDs

- Working smarter:
 - For each P on frontier of ancestry tree: $O(P)$
 - For each square A visited tracing laser casts: $O(A)$
 - Simultaneously traverse:
 - Ancestry from P to root
 - Balanced tree of observations for P
- $O(AP^2)$ complexity

A Linear Solution

- For any iteration of the particle filter:
 - On the first visit to any grid square A: $O(A)$
 - Parse all current particles against observation data stored at A: $O(P)$
 - Cache result
 - On subsequent visits to A: $O(AP)$
 - Return cached result: $O(1)$
- $O(AP) + O(AP) = O(AP)$ complexity

Alternate view will be presented later!

Map Update Complexity

- Updates trickier than they seem at first
- Expensive part: Collapsing

- Q: How to bound collapsing cost?

Amortized Analysis

- $O(AP)$ new observations inserted at leaves
- Total path length in tree bounds total work done collapsing or deleting nodes
- $O(AP)$ amortized cost

Complexity Summary

- Localization: $O(AP)$
 - P particles check A grid squares
 - Lookups are cached
- Map Maintenance: $O(AP)$
- Cost for pure localization with P particles: $O(AP)$

Comparison with Naïve Approach

- Total Time : $O(AP)$
 - Compare to $O(MP)$
 - $M >> A$
 - Linear in observation size
 - Independent of map size
 - Asymptotically, mapping is no more expensive than localization for fixed P

A = Area observed
P = Number of particles
M = Map size
Single Map SLAM

DP-SLAM 1.0 Results

Run at real-time speed on 2.4GHz Pentium 4 at 10cm/s

Scale:
1 square = 3cm

Consistency

DP-SLAM 2.0

- Folds in algorithmic improvements
- Improved laser penetration model
- Models behavior of each square to laser
- More accurate
- Can be slower in practice, but recent improvements regain real time speed

Ask for details later

DP-SLAM 1.0 in a Noisy Domain

DP-SLAM 2.0
Caveats and Future Work

- Particle filters have limitations:
 - Still not as robust as Kalman Filter
 - Eventually, unlucky sampling will miss true state (we are working on reducing frequency/severity)
 - Can require LARGE number of particles in presence of high noise or ambiguity

- Extending to 3D (easier and harder)
- Alternate map representations

Conclusions

- Slam is a tracking problem
- Different approaches to tracking permit
 - Different map representations
 - Different uncertainty representations
- Good performance requires
 - Sound probabilistic inference procedures
 - Efficient data structures
 - Good modeling

- Our per particle mapping cost = localization cost
- Moral: *Algorithms and data structures still matter 😊*

Questions?

Linear Solution: Another View

- We build a local “map cache”
- Initialize O(P) local maps of size A
- For each visible grid square
 - Populate local maps from stored observations
- For each “interior” map
 - Push observations down to child maps

Building the Map Cache I

- Visible region O(A)
- Global Map
- Map Cache (one entry per node in ancestry tree) O(AP)
Building the Map Cache II

Why didn’t you use quad trees?

- **Answer 1**: Quad trees solve a different problem
 - Quad trees exploit homogeneity within a single map
 - DP-SLAM exploits homogeneity across maps

- **Answer 2**: Quad trees solve the wrong problem
 - Statistics collected for each grid square make grid squares for any map quite heterogeneous

- Quad trees might be useful as an approximation or to compress unseen regions

Laser Model

- Naïve models condition the probability of a scan on the number of squares penetrated

 Equal length scans

 One travels through six squares

 The other travels through nine squares

- Probability of laser penetration depends on distance traveled through a grid square

Laser Model

- **d** = tendency of environment to stop laser
- Consistency

 - Scale of map should not affect probabilities

 \[P(x+y|d) = P(x|d) + (1-P(x|d))P(y|d) \]

Laser Model

- Exponential distribution satisfies desiderata

 \[P(x|d) = 1 - e^{-x/d} \]

- Map updates

 - Mean of \(1 - e^{-x/d} = d \)

 - Estimate \(d \approx \) distance observed/stops observed

- No effect on computational complexity

Why don’t you have drift?

- Robot moves slowly

- Most uncertainty is short lived

 - Distant scans have most uncertainty

 - Dense scanning of close areas resolves ambiguities

- For long-lived uncertainty

 - Hierarchical approach

 - High level treats low level maps as observations

 - High level treats map errors (translations and rotations) as motion model noise