Definition: A language L is \textit{recursively enumerable} if there exists a TM M such that $L = L(M)$.

Definition: A language L is \textit{recursive} if there exists a TM M such that $L = L(M)$ and M halts on every $w \in \Sigma^+$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M)$.
- Construct 2-tape TM M'
 - Tape 1 will enumerate the strings in Σ^+
 - Tape 2 will enumerate the strings in L.
 - On tape 1 generate the next string v in Σ^+
 - simulate M on v
 - if M accepts v, then write v on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all $w \in \Sigma^+$ in a recursively enumerable language L:

Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$)
- Run M for one step on w_k
 - Run M for two steps on w_{k-1}.
 - ...
 - Run M for k steps on w_1.
 - If any of the strings are accepted then write them to tape 2.

\textbf{Theorem} Let S be an infinite countable set. Its powerset 2^S is not countable.

\textbf{Proof - Diagonalization}

- S is countable, so it’s elements can be enumerated.

 $S = \{s_1, s_2, s_3, s_4, s_5, s_6, \ldots\}$

 An element $t \in 2^S$ can be represented by a sequence of 0’s and 1’s such that the ith position in t is 1
 if s_i is in t, 0 if s_i is not in t.

 Example, $\{s_2, s_3, s_5\}$ represented by

 Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots\}$ represented by

 Suppose 2^S countable. Then we can enumerate all its elements: t_1, t_2, \ldots

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

...
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.
 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \overline{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$
 Enumerate all TM’s over Σ:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>aaaa</th>
<th>aaaaa</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(M_1)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \overline{L} are both RE, then L is recursive.

Proof:

- There exists an M_1 such that M_1 can enumerate all elements in L.
- There exists an M_2 such that M_2 can enumerate all elements in \overline{L}.
- To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \overline{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.
- Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:

```
all
languages

recursively enumerable
languages

recursive
languages

context-free
languages

regular
languages
```
Definition A grammar $G=(V,T,S,P)$ is *unrestricted* if all productions are of the form

$$u \rightarrow v$$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:

Let $G=({S,A,X},{a,b},S,P)$, $P=

$$
S \rightarrow bAaaX \\
bAa \rightarrow abA \\
AX \rightarrow \lambda
$$

Example Find an unrestricted grammar G s.t. $L(G)=\{a^n b^n c^n | n > 0\}$

$G=(V,T,S,P)$

$V=\{S,A,B,D,E,X\}$

$T=\{a,b,c\}$

$P=$

1) $S \rightarrow AX$
2) $A \rightarrow aAbc$
3) $A \rightarrow aBbc$
4) $Bb \rightarrow bB$
5) $Bc \rightarrow D$
6) $Dc \rightarrow cD$
7) $Db \rightarrow bD$
8) $DX \rightarrow EXc$

There are some rules missing in the grammar.

To derive string $aabbcccc$, use productions 1,2 and 3 to generate a string that has the correct number of a's b's and c's. The a's will all be together, but the b's and c's will be intertwined.

$$S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aAAbbcX \Rightarrow aaaBbcbccX$$
Theorem If G is an unrestricted grammar, then L(G) is recursively enumerable.

Proof:

• List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that L=L(G).

Proof:

• L is recursively enumerable.
 ⇒ there exists a TM M such that L(M)=L.
 M = (Q, Σ, Γ, δ, q0, B, F)

q0w ⊢ x1qfx2 for some qf ∈ F, x1, x2 ∈ Γ*

Construct an unrestricted grammar G s.t. L(G)=L(M).

S ⊢ w

Three steps

1. S ⊢ B...B#xqf yB...B
 with x,y ∈ Γ* for every possible combination
2. B...B#xqf yB...B ⊢ B...B#q0wB...B
3. B...B#q0wB...B ⊢ w
Definition A grammar G is context-sensitive if all productions are of the form

\[x \rightarrow y \]

where \(x, y \in (V \cup T)^+ \) and \(|x| \leq |y| \)

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that \(L = L(G) \) or \(L = L(G) \cup \{\lambda\} \).

Theorem For every CSL L not including \(\lambda \), \(\exists \) an LBA M s.t. \(L = L(M) \).

Theorem If L is accepted by an LBA M, then \(\exists \) CSG G s.t. \(L(M) = L(G) \).

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.