Regular Expressions

Method to represent strings in a language

- union (or)
- concatenation (AND) (can omit)
- star-closure (repeat 0 or more times)

Example:

\((a + b)^* \circ a \circ (a + b)^*\)

Example:

\((aa)^*\)

Definition Given \(\Sigma\),

1. \(\emptyset, \lambda, a \in \Sigma\) are R.E.
2. If \(r\) and \(s\) are R.E. then
 - \(r + s\) is R.E.
 - \(rs\) is R.E.
 - \((r)\) is a R.E.
 - \(r^*\) is R.E.
3. \(r\) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) = \text{language denoted by R.E. } r\).

1. \(\emptyset, \{\lambda\}, \{a\}\) are L denoted by a R.E.
2. If \(r\) and \(s\) are R.E. then
 - (a) \(L(r + s) = L(r) \cup L(s)\)
 - (b) \(L(rs) = L(r) \circ L(s)\)
 - (c) \(L((r)) = L(r)\)
 - (d) \(L((r)^*) = (L(r)^*)\)

Precedence Rules

* highest
-
+

Example:

\(ab^* + c =\)
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}$.

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}$.

3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

- Proof:
 1. \emptyset
 2. $\{\lambda\}$
 3. $\{a\}$
 4. Suppose r and s are R.E.
 5. $r+s$
 6. $r \circ s$
 7. r^*

Example

$ab^* + c$

Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- Proof:
 1. L is regular
 2. \exists
 3. Assume M has one final state and $q_0 \notin F$
 4. Convert to a generalized transition graph (GTG), all possible edges are present.
 5. If no edge, label with
 6. Let r_{ij} stand for label of the edge from q_i to q_j
 7. If the GTG has only two states, then it has the following form:
 8. In this case the regular expression is:
 9. $r = (r_{ii}^* r_{ij} r_{jj}^*)^* r_{ii}^* r_{ij} r_{jj}^*$
 10. If the GTG has three states then it must have the following form:
In this case, make the following replacements:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).
 For all $o \neq k, p \neq k$ use the rule

 r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$

 with different values of o and p.

 When done, remove q_k and all its edges. Continue eliminating states until only two states are left.
 Finish with step 3.

6. In each step, simplify the regular expressions r and s with:
\[r + r = r \\
(\lambda + r)^* = \\
(\lambda + r)r^* = \\
\text{and similar rules.} \]

Example:

\[q_0 \quad q_1 \quad q_2 \]

\[a \quad b \]

Section 3.3

Grammar \(G = (V, T, S, P) \)

- \(V \): variables (nonterminals)
- \(T \): terminals
- \(S \): start symbol
- \(P \): productions

Right-linear grammar:

- all productions of form
 \[A \rightarrow xB \]
 \[A \rightarrow x \]
- where \(A, B \in V, x \in T^* \)

Left-linear grammar:

- all productions of form
 \[A \rightarrow Bx \]
 \[A \rightarrow x \]
- where \(A, B \in V, x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]

Example 2:

\[G = (\{S, B\}, \{a, b\}, S, P), P = \]
\[S \rightarrow aB | bS | \lambda \]
\[B \rightarrow aS | bB \]

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\((\Leftarrow) \) Given a regular grammar \(G \)
Construct NFA \(M \)
Show \(L(G) = L(M) \)

\((\Rightarrow) \) Given a regular language
\(\exists \) DFA \(M \) s.t. \(L = L(M) \)
Construct reg. grammar \(G \)
Show \(L(G) = L(M) \)

Proof of Theorem:

\((\Leftarrow) \) Given a regular grammar \(G \)
\[G = (V, T, S, P) \]
\[V = \{V_0, V_1, \ldots, V_y\} \]
\[T = \{v_0, v_1, \ldots, v_z\} \]
\[S = V_0 \]
Assume \(G \) is right-linear
(see book for left-linear case).
Construct NFA \(M \) s.t. \(L(G) = L(M) \)
If \(w \in L(G) \), \(w = v_1 v_2 \ldots v_k \)

\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]
\[V_0 \text{ is the start (initial) state} \]
For each production, \(V_i \rightarrow aV_j \),

\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]
\[V_0 \text{ is the start (initial) state} \]
For each production, \(V_i \rightarrow aV_j \),
For each production, $V_i \to a$,

Show $L(G) = L(M)$
Thus, given R.G. G, $L(G)$ is regular

(\implies) Given a regular language L
\exists DFA M s.t. $L = L(M)$

$M = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, \ldots, q_n\}$

$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$

$G = (Q, \Sigma, \delta, q_0, P)$

if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G) = L(M)$.

QED.

Example

$G = (\{S, B\}, \{a, b\}, \Sigma, P)$, $P =$

$S \to aB \mid bS \mid \lambda$

$B \to aS \mid bB$

Example: