Section: Regular Languages

Regular Expressions
Method to represent strings in a language

+ union (or)
⊙ concatenation (AND) (can omit)
∗ star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]
Definition Given \(\Sigma \),

1. \(\emptyset, \lambda, a \in \Sigma \) are R.E.

2. If \(r \) and \(s \) are R.E. then
 - \(r + s \) is R.E.
 - \(rs \) is R.E.
 - \((r) \) is a R.E.
 - \(r^* \) is R.E.

3. \(r \) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{\lambda\}, \{a\} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s) \)
 (b) \(L(rs) = L(r) \circ L(s) \)
 (c) \(L((r)) = L(r) \)
 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

* highest

Example:

\[ab^* + c = \]
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{’}s \text{ followed by an even number of } b\text{’}s\}.$

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{’}s \text{ and must end in } ab\}.$

3. Regular expression for positive and negative integers
Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \(\exists \) NFA M s.t. \(L(M) = L(r) \).

• Proof:

\(\emptyset \)

\(\{\lambda\} \)

\(\{a\} \)

Suppose r and s are R.E.

1. \(r+s \)

2. \(r \circ s \)

3. \(r^* \)
Example

\[ab^* + c \]
Theorem Let L be regular. Then \exists R.E. r s.t. $L = L(r)$.

Proof Idea: remove states successively until two states left

- Proof:

 L is regular

 $\Rightarrow \exists$

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

\[
\begin{align*}
\text{In this case the regular expression is:} \\
r &= (r_{ii}r_{ij}r_{ji}r_{ji})^*r_{ii}r_{ij}r_{jj}
\end{align*}
\]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}^*r_{kk}r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}^*r_{kk}r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

\[r + r = r \]
\[s + r^* s = \]
\[r + \emptyset = \]
\[r\emptyset = \]
\[\emptyset^* = \]
\[r\lambda = \]
\[(\lambda + r)^* = \]
\[(\lambda + r)r^* = \]

and similar rules.
Example:
Grammar $G = (V, T, S, P)$

- V variables (nonterminals)
- T terminals
- S start symbol
- P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$
$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form

\[A \rightarrow Bx \]
\[A \rightarrow x \]

where \(A, B \in V \), \(x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), \quad P = \]

\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[
S \rightarrow aB \mid bS \mid \lambda \\
B \rightarrow aS \mid bB
\]
Theorem: L is a regular language iff \(\exists \) regular grammar G s.t. \(L = L(G) \).

Outline of proof:

(\(\iff \)) Given a regular grammar G
Construct NFA M
Show \(L(G) = L(M) \)

(\(\implies \)) Given a regular language
\(\exists \) DFA M s.t. \(L = L(M) \)
Construct reg. grammar G
Show \(L(G) = L(M) \)
Proof of Theorem:

(⇐) Given a regular grammar G
$G=(V,T,S,P)$
$V=\{V_0, V_1, \ldots, V_y\}$
$T=\{v_0, v_1, \ldots, v_z\}$
$S=V_0$
Assume G is right-linear
(see book for left-linear case).
Construct NFA M s.t. $L(G)=L(M)$
If $w \in L(G)$, $w=v_1v_2\ldots v_k$
\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]

- \(V_0 \) is the start (initial) state
- For each production, \(V_i \to aV_j \),

For each production, \(V_i \to a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G,

\(L(G) \) is regular
(⇒) Given a regular language L
∃ DFA M s.t. L=L(M)
M=(Q,Σ,δ,q_0, F)
Q={q_0, q_1, ..., q_n}
Σ = {a_1, a_2, ..., a_m}
Construct R.G. G s.t. L(G) = L(M)
G=(Q,Σ,q_0,P)
if δ(q_i,a_j)=q_k then

if q_k ∈ F then

Show w ∈ L(M)⇐⇒ w ∈ L(G)
Thus, L(G)=L(M).
QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example: