Search in Games

CPS 170
Ron Parr

Why Study Games?

• Many human activities can be modeled as games
 – Negotiations
 – Bidding
 – TCP/IP
 – Military confrontations
 – Pursuit/Evasion

• Games are used to train the mind
 – Human game-playing, animal play-fighting
Why Are Games Good for AI?

• Games typically have concise rules
• Well-defined starting and end points
• Sensing and effecting are simplified
 – Not true for sports games
 – See robocup
• Games are fun!
• Downside: Getting taken seriously (not)
 – See robo search and rescue

Some History of Games in AI

• Computer games have been around almost as long as computers (perhaps longer)
 – Chess: Turing (and others) in the 1950s
 – Checkers: Samuel, 1950s learning program
• Usually start with naïve optimism
• Follow with naïve pessimism
• Simon: Predicted computer chess champ by 1967
• Many, e.g., Kasparov, predicted that a computer would never be champion
Games Today

• Computers perform at champion level
 – Backgammon, Checkers (solved), Chess, Othello
• Computers perform well
 – Bridge, poker
• Computers still do badly
 (but recent breakthroughs show promise)
 – Go, Hex

Simple Game Setup

• Most commonly, we study games that are:
 – 2 player
 – Alternating
 – Zero-sum
 – Perfect information
• Examples: Checkers, chess, backgammon
• Assumptions can be relaxed at some expense
• Economics studies case where #of agents is very large
 – Individual actions don’t change the dynamics
Zero Sum Games

- Assign values to different outcomes
- Win = 1, Loss = -1
- With zero sum games every gain comes at the other player’s expense
- Sum of both player’s scores must be 0
- Are any games truly zero sum?

Characterizing Games

- Two-player alternating move games are very much like search
 - Initial state
 - Successor function
 - Terminal test
 - Objective function (heuristic function)
- Unlike search
 - Terminal states are often a large set
 - Full search to terminal states usually impossible
Game Trees

Player 1

Player 2

Max nodes

A1

A2

A3

Min nodes

A11

A12

A21

A22

A31

A32

Terminal Nodes

Game Trees (abstracted)
Minimax

- Max player tries to maximize his return
- Min player tries to minimize his return
- This is optimal for both (assuming zero sum)

\[
\text{minimax}(n_{\text{max}}) = \max_{s \in \text{successors}(n)} \text{minimax}(s)
\]
\[
\text{minimax}(n_{\text{min}}) = \min_{s \in \text{successors}(n)} \text{minimax}(s)
\]

Minimax Values
Minimax Properties

- Minimax can be run depth first
 - Time $O(b^n)$
 - Space $O(bm)$

- Assumes that opponent plays optimally

- Based on a worst-case analysis

- What if this is incorrect?

Minimax in the Real World

- Search trees are too big
- Alternating turns double depth of the search
 - 2 ply = 1 full turn
- Branching factors are too high
 - Chess: 35
 - Go: 361
- Full search from start to end never terminates in non-trivial games
Evaluation Functions

• Like heuristic functions
• Try to estimate value of a node without expanding all the way to termination
• Using evaluation functions
 – Do a depth-limited search
 – Treat evaluation function as if it were terminal
• What’s wrong with this?
• How do you pick the depth?
• How do you manage your time?
 • Iterative deepening, quiescence

Desiderata for Evaluation Functions

• Would like to put the same ordering on nodes (even if values aren’t totally right)
• Is this a reasonable thing to ask for?
• What if you have a perfect evaluation function?
• How are evaluation functions made in practice?
 – Buckets
 – Linear combinations
 • Chess pieces (material)
 • Board control (positional, strategic)
Search Control Issues

• Horizon effects
 – Something interesting is just beyond the horizon?
 – How do you know?
• When to generate more nodes?
• If you selectively extend your frontier, how do you decide where?
• If you have a fixed amount of total game time, how do you allocate this?

Pruning

• *The most important search control method is figuring out which nodes you don’t need to expand*

• Use the fact that we are doing a worst-case analysis to our advantage
 – Max player cuts off search when he knows min player can force a provably bad outcome
 – Min player cuts of search when he knows max can force a provably good (for max) outcome
How to prune

- We still do (bounded) DFS
- Expand at least one path to the “bottom”

- If current node is **max** node, and **min** can force a *lower* value, then prune siblings

- If current node is **min** node, and **max** can force a *higher* value, then prune siblings
Max node pruning

Implementing alpha-beta

max_value(state, alpha, beta)
if cutoff(state) then return eval(state)
for each s in successors(state) do
 alpha = max(alpha, min_value(s, alpha, beta))
 if alpha >= beta the return beta
end
return alpha

min_value(state, alpha, beta)
if cutoff(state) then return eval(state)
for each s in successors(state) do
 beta = min(beta, max_value(s, alpha, beta))
 if beta <= alpha the return alpha
end
return beta
Amazing facts about alpha-beta

- Empirically, alpha-beta has the effect of reducing the branching factor by *half* for many problems.
- Effectively doubles search horizon.
- Alpha-beta makes the difference between novice and expert computer players.

What About Probabilities?

![Diagram showing a decision tree with max and min nodes connected by chance nodes with probabilities P=0.5, P=0.6, P=0.4, P=0.9, P=0.1.](diagram.png)
Expectiminimax

- \(n \) random outcomes per chance node
- \(O(b^m n^m) \) time

\[
\begin{align*}
eminimax(n_{\text{max}}) &= \max_{s \in \text{successors}(n)} eminimax(s) \\
eminimax(n_{\text{min}}) &= \min_{s \in \text{successors}(n)} eminimax(s) \\
eminimax(n_{\text{chance}}) &= \sum_{s \in \text{successors}(n)} eminimax(s) p(s)
\end{align*}
\]

Expectiminimax is nasty

- High branching factor

- Randomness makes evaluation fns difficult
 - Hard to predict many steps into future
 - Values tend to smear together
 - Preserving order is not sufficient

- Pruning is problematic
 - Need to prune based upon bound on an expectation
 - Need a priori bounds on the evaluation function
Multiplayer Games

- Things sort-of generalize, but can get complicated
- Maintain vector of possible values for each player at each node
- Might assume that each player acts greedily, but what’s wrong with this?
- Correct treatment requires the full machinery of game theory

Conclusions

- Game tree search is a special kind of search
- Rely heavily on heuristic evaluation functions
- Alpha-beta is a big win
- Most successful players use alpha-beta
- Final thought: Tradeoff between search effort and evaluation function effort
- When is it better to invest in your evaluation function?