CompSci 516
Data Intensive Computing Systems

Lecture 9
Join Algorithms
and
Query Optimizations

Instructor: Sudeepa Roy

CompSci 516: Data Intensive Computing

Duke CS, Spring 2016
Systems

Announcements

Takeaway from Homework 1
* Youlearnt
— SQL + Postgres

— Basic data analysis (from data acquisition, cleaning*, querying, to visualizing results —
did you find some interesting/expected results? do people collaborate more now?)

e Startearly

e Butdon’thesitatetoasklast minute questions on Piazza!

— avg response time = 40 min for 66 posts/250 contributions including questions
posted at night

* |If youhavean importantreason (health, interview, paper deadline, computer
crash, but NOT another examor hw), you **might** get a short extension
— at the discretion of the course staff
— may depend on your effort in the two weeks
— strongly encourage to finish early
— must have the permission prior to the deadline

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 2

Announcements

e Homework 2

— To be posted soon, due after 2 weeks
— No coding, Q/A on all topics so far

* Homework 3
— Part 1 will be posted soon too
— Due 2 weeks **after** the due date of HW2 (in ~4 weeks)
— You will learn Spark/Scala

— Which will be useful when you do an assignment on AWS
using Spark/Scala in HW4

What will we learn?

e Last lecture:
— External sorting (limited buffer pages)
— Operator Algorithms for Selection and Projection

* Next:
— Join Algorithms
— Other operators (set, aggregate)
- Query Optimization to be continued in the next lecture

with Cost-based optimization
and Selinger’s algorithm

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Reading Material

* [RG]
— Join Algorithm: Chapter 14.4
— Set/Aggregate: Chapter 14.5, 14.6

— Query optimization: Chapter 15 (overview only)

Acknowledgement:
The following slides have been created adapting the

instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Algorithms for Joins

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Equality Joins With One Join Column

SELECT *
FROM ReservesR, Sailors S
WHERE R.sid=S.sid

* |nalgebra: R S

— Common! Must be carefully optimized
— R X Sislarge; so, R XS followed by a selection is inefficient

* Cost metric: # of I/Os

— We will ignore output costs (always)
= the cost to write the final result tuples back to the disk

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Common Join Algorithms

1. Nested LoopsJoins

— Simple nested loopjoin
— Block nested loop join
— index nested loopjoin

2. Sort I\/Ier‘ge Join Very similar to external sort

3. Hash Join Very similar to duplicate elimination in projection

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Algorithms for Joins

1. NESTED LOOP JOINS

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

M = 1000 pages in R
Pr = 100 tuples per page

Simple Nested Loops Join

RS

foreach tuple rin Rdo
foreach tuple s in S where ri ==sj do

add <r, s> to result

N =500 pages in S
ps = 80 tuples per page

 Foreachtupleinthe outerrelation R, we scan the entire inner relation S.
— Cost: M+ (pg*M) *N = 1000+ 100*1000*500 1/Os.

* Page-oriented Nested Loopsjoin:
— For each page of R, get each page of S
— and write out matching pairs of tuples <r, s>
— whererisin R-page and Sis in S-page.
— Cost: M+ M*N =1000+1000*500

- |f smallerrelation (S) is outer
— Cost: N+ M*N =500+500*1000

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 10

Block Nested Loops Join

Simple-Nested does not properly utilize buffer pages

Suppose have enough memory to hold the smallerrelation R + at least two other

pages

— e.g.in the example on previous slide (S is smaller), and we need 500 + 2 = 502 pages in the buffer

Then use one page as an input buffer for scanning the inner

— one page asthe output buffer

— For each matching tuple rin R-block, s in S-page, add <r, s> to result

Total 1/O = M+N

Whatif the entire smallerrelation does not fit?

R&S
S

Entire smaller relation R

Y

N

. A

7

Duke CS, Spring 2016

>

Inpu

Join Result
S

buffer f
buffer for S Output buffer

CompSci 516: Data Intensive Computing Systems 11

Block Nested Loops Join

* |If R does not fit in memory,

— Use one page as an input buffer for scanningthe inner S

— one page as the output buffer
— and use all remaining pages to hold block” of outer R.
— Foreach matchingtuplerin R-block, s in S-page, add <r, s>to result

— Thenread next R-block, scan S, etc.

R&S

Hash table for block of R

(k <= B-2 pages)

Y

x

7

3
>

Duke CS, Spring 2016

Join Result

Input buffer for S Output buffer

CompSci 516: Data Intensive Computing Systems 12

Cost of Block Nested Loops

M = 1000 pages in R
Pr = 100 tuples per page

in class

Ris outer

B-2 = 100-page blocks
How many blocks of R?
Costto scanR?

Costto scanS?

Total Cost?

N =500 pages in S
ps = 80 tuples per page

foreach block of B-2 pages of R do
foreach page of S do {
for all matching in-memory tuplesr in R-
block and s in S-page
add <r, s> to result

R&S

Join Result
Hash table for block of R

(k <= B-2 pages)

\ 4

X

7

3
>

Duke CS, Spring 2016

Input buffer for S Output buffer

CompSci 516: Data Intensive Computing Systems 13

M = 1000 pages in R
Pr = 100 tuples per page

Cost of Block Nested Loops

N =500 pages in S

Ris outer e

= 80 tuples per page
B-2 = 100-page blocks Ps U [PE Bk
How many blocks of R? 10 foreach block of B-2 pages of R do

foreach page of S do {

?
Costto scan Rv 1000 for all matching in-memory tuplesr in R-

CosttoscanS? 10 * 500 block and s in S-page

Total Cost? 1000 + 5000 = 6000 add <r, s> to result

(check yourself) Cost: Scan of outer + #outer blocks * scan of

* |If space for just 90 pages of R, we inner

would scan S 12 times, cost = 7000 — __ #outer blocks = [#pages of outer relation/blocksize]
R&S Join Result
for blocked — Hash table for block of R —
. (k <= B-2 pages) _

access, —
it might be > °c o0
good g
to equally %
divide N

buffer pages) Input buffer for S Output buffer
amqng Rand s, ,

6 CompSci 516: Data Intensive Computing Systems 14

M = 1000 pages in R
Pr = 100 tuples per page

Index Nested Loops Join

N =500 pages in S

foreach tuple rin R do ps = 80 tuples per page

foreach tuple s in S where ri ==s; do
add <r, s> to result

* Supposethereis anindexon the join column of one relation
— say S
— can make itthe inner relation and exploit the index
— Cost: M+ ((M*pg) * cost of finding matching S tuples)

— For each R tuple, cost of probingS index (get k*) is about 1.2 for
hash index, 2-4 for B+ tree.

— Cost of then finding S tuples (assuming Alt. 2 or 3) dependson
clustering

- (see previous lecture)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 15

M = 1000 pages in R

Cost of Index Nested Loops ™=t perpeee

N =500 pages in S
ps = 80 tuples per page

SELECT *
FROM Reserves R, Sailors S foreach tuplerin R do
WHERE R.sid=S.sid foreach tuple s in S where ri == sj do

add <r, s> to result

Hash-index (Alt. 2) on sid of Sailors (as inner), sid is a key

« Cost to scan Reserves?
— 1000 page I/0s, 100*1000 tuples.
 Cost to find matching Sailors tuples?
— For each Reserves tuple:

— 1.2 1/Osto get dataentryin index
— +1 1/0O toget (the exactlyone) matchingSailors tuple

- Total cost:

+ 1000:+,100 * 1000 * 2.2 5,221,000,/ QS o puing sstem: 16

M = 1000 pages in R

Cost of Index Nested Loops ™=t perpeee

N =500 pages in S
ps = 80 tuples per page

SELECT *
FROM Reserves R, Sailors S foreach tuplerin R do
WHERE R.sid=S.sid foreach tuple s in S where ri == sj do

add <r, s> to result
 Hash-index (Alt. 2) on sid of Reserves (as inner), sid is NOT a key

- Costto Scan Sailors:
— 500 page 1/0Os, 80*500 tuples.
- Foreach Sailors tuple:
— 1.2 1/0sto find index page with data entries
— + cost of retrieving matching Reserves tuples
- Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000).

- Cost of retrieving them is 1 or 2.5 |/Os depending on whether the index is
clustered

Total cost = 500 + 80 * 500 * 2.2 if clustered
up to ~ 500 + 80 * 500 * 3.7 if unclustered (approx)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 17

Duke CS, Spring 2016

Algorithms for Joins

2. SORT-MERGE JOINS

CompSci 516: Data Intensive Computing Systems

18

Sort-Merge Join

* Sort Rand S on the join column
 Then scanthem to do a merge” (on join col.)
e Qutput result tuples.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 19

Sort-Merge Join

- Advance scan of R until current R-tuple >= current S tuple
— then advance scan of S until current S-tuple >= current R tuple
— do thisuntilcurrent R tuple = current S tuple

Sailors Reserves
¥ . sid bid | day rname
Sid |sname |rating age
=2 [dustin | 7 |45.0 28 103 112/4/96 | guppy
28 yuppy | 9 35.0 28 1103 |11/3/96 | yuppy
S : .
31 lubber | 8 1555 31 101 [10/10/96 | dustin
44 |guppy | 5 350 31 102 [10/12/96 | lubber
58 |rusty 10 135.0 31 101 |10/11/96 | lubber
58 1103 |11/12/96 | dustin

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

Sort-Merge Join

- Advancescan of R until current R-tuple >= currentS tuple
— thenadvancescan of S until current S-tuple >= current R tuple
— do thisuntil currentR tuple =currentS tuple

At this point, all R tuples with samevalue in Ri (current R group) and all S
tuples with samevalue in Sj (current S group) match

— find all the equal tuples
— output<r, s> forall pairs of such tuples

. . sid bid | day rname
Sid_sname |rating _age 58103 |12/4/96 | guppy

22 |dustin | 7 45.0
{5 Jyurpy | 0 350 28]103 11396 | yuppy

S : :

;]mbber O e R |31 101 10/10/96 | dustin
44 ouppy @ 5 35 () 31 102 [10/12/96 | lubber
58 |rusty 10 135.0 31 [101 |10/11/96 | lubber
58 103 |11/12/96 | dustin

Duke CS, Spring 2016

WRITE TWO OUTPUT TUPLES

CompSci 516: Data Intensive Computing Systems

21

Sort-Merge Join

Advance scan of R until current R-tuple >= currentS tuple
— thenadvancescan of S until current S-tuple >= current R tuple
— do thisuntil currentR tuple =currentS tuple

At this point, all R tuples with samevalue in Ri (current R group) and all S
tuples with samevaluein Sj (current S group) match

— find all the equal tuples
— output<r, s> for all pairs of such tuples

Then resumescanningR and S

, : sid |bid day rname

5 |8 sname rafing age 28 103 |12/4/96 | guppy
22 |dustin 7 45.0

28 |lyuppy | 9 35.0 28 103 [11/3/96 | yuppy

44 |ouppy | 5 350 31 102 |10/12/96 | lubber

58 |rusty 10 135.0 31 [101 |10/11/96 | lubber

58 1103 |11/12/96 | dustin

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

22

Sort-Merge Join

Advance scan of R until current R-tuple >= currentS tuple
— thenadvancescan of S until current S-tuple >= current R tuple
— do thisuntil currentR tuple =currentS tuple

At this point, all R tuples with samevalue in Ri (current R group) and all S
tuples with samevaluein Sj (current S group) match

— find all the equal tuples
— output<r, s> for all pairs of such tuples

Then resumescanningR and S

Duke CS, Spring 2016

. . sid bid | day rname
Sl |snatme |rafing |age 28 103 |12/4/96 | guppy
22 |dustin | 7 45.0
28 lyuppy | 9 35,0 28 103 |11/3/9 | yuppy
S ' :
o Juvber | 8 553 31) 101 10/10/96 | dustin
;'guppy s 1350 31 102 110/12/96 | lubber
58 |rusty 10 [35.0 31 J101 |10/11/96 | lubber
58 103 |11/12/96 | dustin

WRITE THREE OUTPUT TUPLES

CompSci 516: Data Intensive Computing Systems

23

Sort-Merge Join

Advance scan of R until current R-tuple >= currentS tuple
— thenadvancescan of S until current S-tuple >= current R tuple
— do thisuntil currentR tuple =currentS tuple

At this point, all R tuples with samevalue in Ri (current R group) and all S
tuples with samevaluein Sj (current S group) match

— find all the equal tuples
— output<r, s> for all pairs of such tuples

Then resumescanningR and S

. . sid bid | day rname
Sid_sname rating_ age 28 103 | 12/4/96 | guppy
22 |dustin | 7 45.0

28 lyuppy | O |35.0 28 103 |11/3/96 | yuppy
S : :
31 b | 8 555 311101 |10/10/96 | dustin
—lid (cuppy | 5 350 31102 10/12/96 | lubber
58 rusty | 10 350 311101 |10/11/96 | lubber
(58 103 |11/12/96 | dustin

NO MATCH, CONTINUE SCANNINGR

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

24

Sort-Merge Join

Advance scan of R until current R-tuple >= currentS tuple
— thenadvancescan of S until current S-tuple >= current R tuple
— do thisuntil currentR tuple =currentS tuple

At this point, all R tuples with samevalue in Ri (current R group) and all S
tuples with samevaluein Sj (current S group) match

— find all the equal tuples

— output<r, s> for all pairs of such tuples

Then resumescanningR and S

. . sid bid | day rname
Sl |snatme |rafing |age 28 103 |12/4/96 | guppy
22 |dustin | 7 45.0 R
% ywpy | 9 350 28 103 |11/3/96 | yuppy
S : :
31 llubber | 8 1555 31 101 |[10/10/96 | dustin
4 louppy | 5 350 31 102 [10/12/96 | lubber
{38 Justy | 10 35.0 31101 |10/11/96 | lubber
reprered w58 103 11/12/96 | dustin
WRITE ONE OUTPUT TUPLE

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

25

Example of Sort-Merge Join

sid

bid

day

mame

sid |sname rating age

22 |dustin | 7 45.0
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 guppy | S 35.0
58 |rusty 10 35.0

28
28
31
31
31
58

103
103
101
102
101
103

12/4/96
11/3/96
10/10/96
10/12/96
10/11/96
11/12/96

guppy

yuppy
dustin

lubber

lubber
dustin

e Cost: O(M log M) + O(N log N) + (M+N)
— cost of sorting R + sorting S + mergingR, S

— The cost of scanning, M+N, could be M*N (suppose

single value of join attribute in both R and S)

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

26

Cost of Sort-Merge Join

M = 1000 pages in

Pr = 100 tuples per page

N =500 pages in S

sid |sname |rating |age

22 |dustin | 7 45.0
28 |yuppy | 9 35.0
31 |lubber | 8 55.5
44 |guppy | S 35.0
58 |rusty 10 [35.0

100 buffer pages
Sort R:

— (pass0) 1000/100=10 sorted runs

— (pass 1) merge 10 runs
— read + write, 2 passes

— 4*1000=40001/0
Similarly, Sort S: 4 * 500 = 2000 |/O

ps = 80 tuples per
sid |bid | day rname
28 1103 [12/4/96 | guppy
28 103 [11/3/96 | yuppy
31 101 [10/10/96 | dustin
31 102 [10/12/96 | lubber
31 101 [10/11/96 | lubber
58 103 |11/12/96 | dustin
* Check yourself:

Second merge phase of sort-merge join
— another 1000+ 500=15001/0

Total 7500 1/O

Duke CS, Spring 2016

Consider #buffer
pages 35, 100, 300

Cost of sort-merge =
7500 in all three

Cost of block nested
15000, 6000, 2500

CompSci 516: Data Intensive Computing Systems

R

page

27

Duke CS, Spring 2016

Algorithms for Joins

3. HASH JOINS

CompSci 516: Data Intensive Computing Systems

28

R/
0’0

L)

Hash-Join

Partition both
relations using hash
function h

R tuples in partition i
will only match S
tuples in partition i

Read in a partition of R,
hash it using h2 (<> h).

Scan matching partition of

S, search for matches.

[Os ©ER
Original
Relation OUTPUT Partitions
1 10
> | EED
INPUT Sinln
L[] fuhdion il
e o o h ¢ o0 T e T
B-1
[] B-1
— . [()
Disk B main memory buffers Disk
Partitions]
of R& S Join Result
crs Hash table for partition
Pa<rt|t|o$ hash Ri (k < B-1 pages) ——]
0oQ fn []
aEnln 1 h2 \ . . M . .
oo 2 = -
- -o o 0 — > ”
Input buffer Output .
D B-1 for Si buffer N,
S B main memory buffers Disk29
Disk

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

Cost of Hash-Join

In partitioning phase
— read+write both relns; 2(M+N)
— In matchingphase, read both relns; M+N I/Os
— remember —we are not countingfinal write

In our running example, this is a total of 4500 |/Os
— 3 *(1000 + 500)
— Compare with the previous joins

Sort-Merge Join vs. Hash Join:

— Both can have a cost of 3(M+N) 1/Os
- if sort-merge gets enough buffer (see 14.4.2)

— Hash join holds smallerrelation in buffer- better if limited buffer
— Hash Join shown to be highly parallelizable

— Sort-Merge less sensitive to data skew
- also resultis sorted.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

30

General Join Conditions

* Equalities over several attributes
— e.g., R.sid=S.sid aNnD R.rname=S.sname

— For Index Nested Loop, build index on <sid, sname> (if S is
inner); or use existing indexes on sid or sname.

— For Sort-Merge and Hash Join, sort/partition on combination
of the two join columns.

* |Inequality conditions
— e.g., R.rname < S.sname
— ForIndex NL, need (clustered) B+ tree index.
— Hash Join, Sort Merge Join not applicable

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 31

Review: Join Algorithms

* Nested loop join:
— for all tuplesinR.. for all tuplesinS....
— variations: block-nested, index-nested
* Sort-merge join
— like external merge sort
* Hash join

e Make sure you understand how the |/O varies

* No one join algorithm is uniformly superior to others

— dependson relation size, buffer pool size, access methods,
skew

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 32

Algorithms for Set Operations

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

33

Set Operations

Intersection and cross-product special cases of join.
Union (Distinct) and Except similar; we’ll do union

— very similar to external sortand join algorithms

Sorting based approach to union:
— Sort both relations (on combination of all attributes)

— Scan sorted relations and merge them.
— Alternative: Mergeruns from Pass 0 for both relations

Hash based approach to union:
— Partition Rand S using hash function h.

— For each S-partition, build in-memory hash table (using h2), scan corr. R-

partitionand add tuples to table while discarding duplicates
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

34

Algorithms for Aggregate Operations

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

35

Aggregate Operations (AVG, MIN, etc.)
* Without grouping:

— In general, requires scanning the relation.

— Given index whose search key includes all attributes in
the seLecT or wHERE clauses, can do index-only scan

e With grouping:
— Sort on group-by attributes
— or, hash on group-by attributes
— can combine sort/hash and aggregate

— can do index-only scan here as well

Impact of Buffering

* If several operations are executing concurrently, estimating
the number of available buffer pages is guesswork.

* Repeated access patternsinteract with buffer replacement
policy
— recall sequential flooding(lecture 6 and piazza post)
— e.g., Innerrelationis scanned repeatedlyin Simple Nested Loop Join

— With enough buffer pages to hold inner, replacement policy does
not matter

— Otherwise, MRU is best, LRU is worst

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 37

Summary

* A virtue of relational DBMSs: queries are composed of a few
basic operators

— the implementation of these operators can be carefully tuned
(and it is important to do this!).

 Many alternative implementation techniques for each
operator

— no universally superior technique for most operators.

* Must consider available alternatives for each operation in a
guery and choose best one based on system statistics, etc.

— This is part of the broader task of optimizing a query composed of
several ops.

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 38

Duke CS, Spring 2016

Query Optimization

CompSci 516: Data Intensive Computing Systems

39

Old Running Example

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

e Similar to old schema; rname added for variations.

* Reserves:
— Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.
e Sailors:

— Each tuple is 50 bytes long, 80 tuples per page, 500
pages.

Query Blocks: Units of Optimization

Query Block SELECT S.sname
FROM Sailors S
WHERE S.age IN

— One SELECT., one FROM
At most one WHERE, GROUP BY. HAVING GELECI WA ($2mge)
B most one ’ ’ FROM Sailors S2

GROUP BY S2.rating)
SQL query

— No nesting

=> parsed into a collection of query blocks |

Outer block Nested block
=> the blocks are optimized one block at a

time

First we discuss single query block

Express it as a relational algebra (RA)
expression

Query Block as an RA expression

e .
SELECT S.sid, MIN (R.day) S.5id,MIN(R.day)

FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid HAVING COUNT(*)> 1

AND B.color = ‘RED’
AND S.rating = <reference-to-nested-block>
GROUP BY S.sid GROUP BY s g

HAVING COUNT(*) > 1 ‘

Obid=103S.sid = R.sid A R.bid = B.bid
A B.color = ‘RED’ A Srrating = <value-from-nested-block>

Recall the semantic of SQL evaluation

— FROM -> WHERE -> GROUP BY -> HAVING -> X
SELECT

This is not quite an RA plan

— e.g. X can have two inputs only
Also we considered GROUP BY and HAVING ¢ R 3
as RA operators

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

Cost Estimation

For each plan considered, must estimate cost:

Must estimate cost of each operation in plan tree.

— Dependson input cardinalities.

— We've already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)

Must also estimate size of result for each operation in
tree

— Use informationaboutthe inputrelations.
— For selections and joins, assumeindependence of predicates.

also consider whether the outputis sorted

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 43

Estimating Result Sizes

SELECT <attr>

FROM R1,R2,R3,

WHERE <condnl> AND
<condn2>..

 Max #tuples =
— |R1| X |R2| X |R3]| X

e But we can model the effect of WHERE clause
by associating a reduction factor for each
<condn>

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

44

SELECT <attr>

Estimating Result Sizes: T
for different <condn> WHERE <condnl> AND
<condn2>..

column = value

— ifanindex | on column, then 1/Nkeys(l)

— assumes uniform distribution

— some DBMS assumes a constant reduction factor like 1/10

columnl = column?2
— 1/max(Nkeys(11), Nkeys(12))
. 11, 12 are indexes

— againassumes each value in column2 is equally likely for a
match

columnl > value
— High(l)—value / High(l) - low(l)

Advanced methods use histograms (see book)

Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems

45

Relational Algebra Equivalences

* Allow us to choose different join orders and to
‘push’ selections and projections ahead of joins.

‘ SEIECtlonS Ocl/\...Acn(R) = Ocl(Ocn(R)) (Cascade)
001(002(R)) = 002(001(R)) (COmmUte)
% Projections: Jral(R) = Eal((Ean(R))) (Cascade)

@ Joins: Rp<(S5<T) = (RS)>T (Associative)
(Re<iS) = (S<iR) (Commute)

There are many more intuitive equivalences, see 15.3.4 for details

Next lecture: cost-based optimization

and Selinger’s algorithm
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 46

