Relational Database Design: Part I
Introduction to Databases
CompSci 316 Spring 2017

Announcements (Mon. Jan 23)
• Homework #1 due in two weeks
 • Get started early!
• Lab on VM on Wednesday (Jan 25)
 • After we finish the regular lecture on E/R diagrams in the first half

Relational model: review
• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
• Each relation contains a set of tuples (or rows)
• Selection (σ), Projection (π), Join (∧×), Union (∪), Difference (Δ), Renaming (ψ) etc.

Keys
• A set of attributes \(K \) is a key for a relation \(R \) if
 • In no instance of \(R \) will two different tuples agree on all attributes of \(K \)
 • That is, \(K \) can serve as a “tuple identifier”
 • No proper subset of \(K \) satisfies the above condition
 • That is, \(K \) is minimal
• Example: User (uid, name, age, pop)
 • uid is a key of User
 • age is not a key (not an identifier)
 • \{uid, name\} is not a key (not minimal)

Schema vs. instance

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

• Is name a key of User?

More examples of keys
• Member (uid, gid)
 • what are the keys?

• Address (street_address, city, state, zip)
 • what are the keys?
Use of keys

- Understand the real-world domain being modeled
- Specify it using a database design model
- More intuitive and convenient for schema design
- But not necessarily implemented by DBMS
- A few popular ones:
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
 - UML (Unified Modeling Language)
- Translate specification to the data model of DBMS
- Relational, XML, object-oriented, etc.
- Create DBMS schema

But what about ORM?

- Automatic object relational mappers are made popular by rapid Web development frameworks
 - For example, with Python SQLAlchemy:
 - You declare Python classes and their relationships
 - It automatically converts them into database tables
 - If you want, you can just work with Python objects, and never need to be aware of the database schema or write SQL
- But you still need designer discretion in all but simple cases
- Each language/library has its own syntax for creating schema and for querying/modifying data
 - Quirks and limitations cause portability problems
 - They are not necessarily easier to learn than SQL

Entity-relationship (E/R) model

- Historically and still very popular
- Concepts applicable to other design models as well
- Can think of as a “watered-down” object-oriented design model
- Primarily a design model—not directly implemented by DBMS
- Designs represented by E/R diagrams
 - We use the style of E/R diagram covered by the GMUW book; there are other styles/extensions
 - Very similar to UML diagrams

E/R basics

- Entity: a “thing,” like an object
- Entity set: a collection of things of the same type, like a relation of tuples or a class of objects
 - Represented as a rectangle
- Relationship: an association among entities
- Relationship set: a set of relationships of the same type (among same entity sets)
 - Represented as a diamond
- Attributes: properties of entities or relationships, like attributes of tuples or objects
 - Represented as ovals

An example E/R diagram

- Users are members of groups
 - A key of an entity set is represented by underlining all attributes in the key
 - A key is a set of attributes whose values can belong to at most one entity in an entity set—like a key of a relation
Attributes of relationships

- Example: a user belongs to a group since a particular date
- Where do the dates go?

More on relationships

- There could be multiple relationship sets between the same entity sets
- Example: Users IsMemberOf Groups; Users Likes Groups
- In a relationship set, each relationship is uniquely identified by the entities it connects
- Example: Between Bart and “Dead Putting Society”, there can be at most one IsMemberOf relationship and at most one Likes relationship
- What if Bart joins DPS, leaves, and rejoins? How can we modify the design to capture historical membership information?

Multiplicity of relationships

- \(E \) and \(F \): entity sets
- Many-many: Each entity in \(E \) is related to 0 or more entities in \(F \) and vice versa
 - Example:
- Many-one: Each entity in \(E \) is related to 0 or 1 entity in \(F \), but each entity in \(F \) is related to 0 or more in \(E \)
 - Example:
- One-one: Each entity in \(E \) is related to 0 or 1 entity in \(F \) and vice versa
 - Example:
- “One” (0 or 1) is represented by an arrow
- “Exactly one” is represented by a rounded arrow

Roles in relationships

- An entity set may participate more than once in a relationship set
- May need to label edges to distinguish roles
- Examples
 - Users may be parents of others; label needed
 - Users may be friends of each other; label not needed

\(n \)-ary relationships

- Example: a user must have an initiator in order to join a group

Rule for interpreting an arrow into entity set \(E \) in an \(n \)-ary relationship:
- Pick one entity from each of the other entity sets; together they can be related to at most one entity in \(E \)
- Exercise: hypothetically, what do these arrows imply?

\(n \)-ary versus binary relationships

- Can we model \(n \)-ary relationships using just binary relationships?
- Instead of the following?
Weak entity sets

Sometimes, an entity’s identity depends on some others’

- The key of a weak entity set \(E \) comes not completely from its own attributes, but from the keys of one or more other entity sets
 - \(E \) must link to them via many-one or one-one relationship sets
- Example: Rooms inside Buildings are partly identified by Buildings’ name
 - A weak entity set is drawn as a double rectangle
 - The relationship sets through which it obtains its key are called supporting relationship sets, drawn as double diamonds

Weak entity set examples

- Seats in rooms in building
 - Why must double diamonds be many-one/one-one?
 - With many-many, we would not know which entity provides the key value!

Remodeling \(n \)-ary relationships

- An \(n \)-ary relationship set can be replaced by a weak entity set (called a connecting entity set) and \(n \) binary relationship sets

ISA relationships

- Similar to the idea of subclasses in object-oriented programming: subclass = special case, fewer entities, and possibly more properties
 - Represented as a triangle (direction is important)
- Example: paid users are users, but they also get avatars (yay!)

Summary of E/R concepts

- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes of relationships
 - Multiplicity
 - Roles
 - Binary versus \(n \)-ary relationships
 - Modeling \(n \)-ary relationships with weak entity sets and binary relationships
 - ISA relationships
Case study 1

- Design a database representing cities, counties, and states
 - For states, record name and capital (city)
 - For counties, record name, area, and location (state)
 - For cities, record name, population, and location (county and state)
- Assume the following:
 - Names of states are unique
 - Names of counties are only unique within a state
 - Names of cities are only unique within a county
 - A city is always located in a single county
 - A county is always located in a single state

Case study 2

- Design a database consistent with the following:
 - A station has a unique name and an address, and is either an express station or a local station
 - A train has a unique number and an engineer, and is either an express train or a local train
 - A local train can stop at any station
 - An express train only stops at express stations
 - A train can stop at a station for any number of times during a day
 - Train schedules are the same everyday