Announcements (Mon. Jan. 30)

• Homework #1 due Monday 02/06 (11:59 pm)

• Project mixer class on Wednesday 02/01!
 • Please send me a note (sudeepa@cs.duke.edu) by tomorrow night (Tuesday 11:59 pm) if you are presenting a few slides to look for teammates
 • Go for a 5-min talk
 • However, you can join at the last minute too and give a presentation (let me know before Wednesday’s class starts if you are joining late)
 • The sequence of seating arrangement changes in class will be posted by tomorrow night (Tuesday) on piazza (to facilitate discussion on ideas)
Where are we?

• Lecture 1, 2:
 • Relational model basics and queries in relational algebra

• Lecture 3, 4:
 • Understand the real-world domain being modeled
 • Specify it using a database design model (e.g., E/R)
 • Translate specification to the data model of DBMS

Today Lecture 5:
• how to remove unwanted redundancy by “normalization” from this initial design
Motivation

• Why is UserGroup \((uid, uname, gid)\) a bad design?
 • It has redundancy—user name is recorded multiple times, once for each group that a user belongs to
 • Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach to detecting and removing redundancy in designs?
 • Dependencies, decompositions, and normal forms
Functional dependencies

• A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
• $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y
FD examples

Address \((street_address, city, state, zip)\)

- \(street_address, city, state \rightarrow zip\)
- \(zip \rightarrow city, state\)
- \(zip, state \rightarrow zip?\)
 - This is a trivial FD
 - Trivial FD: \(\text{LHS} \supseteq \text{RHS}\)
- \(zip \rightarrow state, zip?\)
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: \(\text{LHS} \cap \text{RHS} = \emptyset\)
A more complex example

UserJoinsGroup \((uid, \text{uname}, \text{twitterid}, \text{gid}, \text{fromDate})\)

Assume that there is a 1-1 correspondence between our users and Twitter accounts

• \(uid \rightarrow \text{uname}, \text{twitterid}\)
• \(\text{twitterid} \rightarrow uid\)
• \(uid, \text{gid} \rightarrow \text{fromDate}\)

Not a good design, and we will see why shortly.
Recall “Keys” from Lecture 3

• A set of attributes K is a key for a relation R if
 • In no instance of R will two different tuples agree on all attributes of K
 • That is, K can serve as a “tuple identifier”
 • No proper subset of K satisfies the above condition
 • That is, K is minimal

• Example: $User (uid, name, age, pop)$
 • uid is a key of $User$
 • age is not a key (not an identifier)
 • $\{uid, name\}$ is not a key (not minimal)
Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

• $K \rightarrow$ all (other) attributes of R
 • That is, K is a “super key”

• No proper subset of K satisfies the above condition
 • That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?

- Is K a key of R?
 - What are all the keys of R?

Both can be answered using “attribute closure”!
Attribute closure

• Given \(R \), a set of FD’s \(\mathcal{F} \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):
 The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(\mathcal{F} \) is the set of all attributes \(\{A_1, A_2, ...\} \) functionally determined by \(Z \) (that is, \(Z \rightarrow A_1A_2 ... \))

• Algorithm for computing the closure
 • Start with closure = \(Z \)
 • If \(X \rightarrow Y \) is in \(\mathcal{F} \) and \(X \) is already in the closure, then also add \(Y \) to the closure
 • Repeat until no new attributes can be added
Example of computing closure

• \{gid, twitterid\}^+ = ?

• twitterid → uid
 • Add uid
 • Closure grows to \{gid, twitterid, uid\}

• uid → uname, twitterid
 • Add uname, twitterid
 • Closure grows to \{gid, twitterid, uid, uname\}

• uid, gid → fromDate
 • Add fromDate
 • Closure is now all attributes in UserJoinsGroup
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

• Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 • Compute X^+ with respect to \mathcal{F}
 • If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

• Is K a key of R?
 • Compute K^+ with respect to \mathcal{F}
 • If K^+ contains all the attributes of R, K is a super key
 • Still need to verify that K is minimal (how?)
Rules of FD’s

• **Armstrong’s axioms**
 - **Reflexivity**: If $Y \subseteq X$, then $X \rightarrow Y$
 - **Augmentation**: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• **Rules derived from axioms**
 - **Splitting**: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - **Combining**: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

• Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 • Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly
Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• \(uid \rightarrow uname, twitterid \)

(... plus other FD’s)

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

How can we eliminate the redundancy?
Decomposition

- **Eliminates redundancy**
- **To get back to the original relation:**

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>uid</td>
<td>uname</td>
<td>twitterid</td>
<td>gid</td>
<td>fromDate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>twitterid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unnecessary decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>uname</th>
<th>twitterid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>@BartJSimpson</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>@MilhouseVan_</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>@lisasimpson</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>@ralphwiggum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)
Bad decomposition

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

• Association between **gid** and **fromDate** is lost
• Join returns more rows than the original relation
Lossless join decomposition

• Decompose relation R into relations S and T
 • $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 • $S = \pi_{\text{attrs}(S)}(R)$
 • $T = \pi_{\text{attrs}(T)}(R)$

• The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

• $R \subseteq S \bowtie T$ or $R \supseteq S \bowtie T$?

• Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 • A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the loss of information
 • Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>gov</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>abc</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>857</td>
<td>gov</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

No way to tell which is the original relation

<table>
<thead>
<tr>
<th>uid</th>
<th>fromDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>123</td>
<td>1989-12-17</td>
</tr>
<tr>
<td>857</td>
<td>1987-04-19</td>
</tr>
<tr>
<td>857</td>
<td>1988-09-01</td>
</tr>
<tr>
<td>456</td>
<td>1991-04-25</td>
</tr>
<tr>
<td>456</td>
<td>1992-09-01</td>
</tr>
</tbody>
</table>

… … …
Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

• A relation R is in Boyce-Codd Normal Form if
 • For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 • That is, all FDs follow from “key \rightarrow other attributes”

• When to decompose
 • As long as some relation is not in BCNF

• How to come up with a correct decomposition
 • Always decompose on a BCNF violation (details next)
 \[\mathcal{F}\] Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

• Repeat until all relations are in BCNF
BCNF decomposition example

\textit{UserJoinsGroup (uid, uname, twitterid, gid, fromDate)}

\textbf{BCNF violation:} \(uid \rightarrow \text{uname}, \text{twitterid} \)

\textit{User (uid, uname, twitterid)}

\(uid \rightarrow \text{uname}, \text{twitterid} \)

\(\text{twitterid} \rightarrow \text{uid} \)

\textbf{BCNF}

\textit{Member (uid, gid, fromDate)}

\(\text{uid, gid} \rightarrow \text{fromDate} \)

\textbf{BCNF}
Another example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

UserId (twitterid, uid)

BCNF

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

Twitterid → uname
twitterid, gid → fromDate

BCNF violation: twitterid → uname

UserName (twitterid, uname)

BCNF

Member (twitterid, gid, fromDate)

BCNF

uid → uname, twitterid
twitterid → uid
uid, gid → fromDate

apply Armstrong’s axioms and rules!
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

• Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 • Sure; and it doesn’t depend on the FD

• Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 • Proof will make use of the fact that $X \rightarrow Y$
Recap

• Functional dependencies: a generalization of the key concept
• Non-key functional dependencies: a source of redundancy
• BCNF decomposition: a method for removing redundancies
 • BNCF decomposition is a lossless join decomposition
• BCNF: schema in this normal form has no redundancy due to FD’s
BCNF = no redundancy?

- *User* (*uid*, *gid*, *place*)
 - A user can belong to multiple groups
 - A user can register places she’s visited
 - Groups and places have nothing to do with other
 - FD’s?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>dps</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
<td>Morocco</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R

- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R
MVD examples

User (uid, gid, place)
• uid \rightarrow gid
• uid \rightarrow place
 • Intuition: given uid, gid and place are “independent”
• uid, gid \rightarrow place
 • Trivial: LHS \cup RHS = all attributes of R
• uid, gid \rightarrow uid
 • Trivial: LHS \supseteq RHS
Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If \(X \rightarrow Y \), then \(X \rightarrow \text{attrs}(R) - X - Y \)
- MVD augmentation:
 If \(X \rightarrow Y \) and \(V \subseteq W \), then \(XW \rightarrow YV \)
- MVD transitivity:
 If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z - Y \)
- Replication (FD is MVD):
 If \(X \rightarrow Y \), then \(X \rightarrow Y \)
 Try proving things using these!?
- Coalescence:
 If \(X \rightarrow Y \) and \(Z \subseteq Y \) and there is some \(W \) disjoint from \(Y \) such that \(W \rightarrow Z \), then \(X \rightarrow Z \)
An elegant solution: chase

• Given a set of FD’s and MVD’s \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure
 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
<td></td>
</tr>
</tbody>
</table>

Need:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
<td>![hand]</td>
</tr>
<tr>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_2</td>
<td>![hand]</td>
</tr>
</tbody>
</table>
Another proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have: \[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b_1 & c_1 & d_1 \\
a & b_2 & c_2 & d_2 \\
\end{array}
\]

Need: \[c_1 = c_2 \]

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities.
Counterexample by chase

• In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Have: $A \rightarrow BC$

Need: $b_1 = b_2$ ❌

Counterexample!
4NF

• A relation R is in **Fourth Normal Form (4NF)** if
 • For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 • That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

• 4NF is stronger than BCNF
 • Because every FD is also a MVD
4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User (uid, gid, place)

4NF violation: \(\text{uid} \rightarrow \text{gid} \)

Member (uid, gid)

4NF

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Visited (uid, place)

4NF

<table>
<thead>
<tr>
<th>uid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Summary

• Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic