Relational Database Design Theory
Introduction to Databases
CompSci 316 Spring 2017

Announcements (Wed. Feb. 1)
• Homework #1 due Monday 02/06 (11:59 pm)

Review: Motivation

• redundancy is bad
 • user name is recorded multiple times
 • Leads to update, insertion, deletion anomalies
 • Have a systematic approach to detecting and removing redundancy in designs
 • Dependencies, decompositions, and normal forms

Review: Functional dependencies

• A functional dependency (FD) $X \rightarrow Y$
 • X and Y are sets of attributes in a relation R
 • whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

Review: Attribute closure

• Given
 • R
 • a set of FD's F that hold in R, and
 • a set of attributes Z in R

 • The closure of Z (denoted Z^+) with respect to F is the set of all attributes $A_1, A_2, ...$ functionally determined by Z
 • that is, $Z \rightarrow A_1, A_2, ...$

Review: Superkeys and Keys

Given a relation R and set of FD’s F

• Compute K^+ with respect to F
 • If K^+ contains all the attributes of R, K is a super key
 • If K is also minimal (no proper subset is a superkey), K is a key
Review: Motivation of BCNF decomposition

- Non-key FDs cause redundancy

\[
\begin{align*}
\text{X} & \rightarrow \text{Y} \\
\text{a} & \rightarrow \text{b} \\
\text{a} & \rightarrow \text{c}
\end{align*}
\]

Here \(X \rightarrow Y \)

Detect such FDs where \(X \) is not a superkey, and decompose into two relations

1. One relation gets \(X, Y \) (\(X \) is a superkey; these make it lossless)
2. The other one gets \(X, Z \) (in general \(Z \) = everything else)

- Multivalued dependencies

\[
\begin{align*}
\text{X} \rightarrow \text{Y} \\
\text{a} & \rightarrow \text{b} \\
\text{a} & \rightarrow \text{c}
\end{align*}
\]

Check yourself! If in one of the two new relations, the common join attributes is a superkey, then lossless

- Complete MVD + FD rules

- Check your knowledge!
An elegant solution: chase

• Given a set of FD’s and MVD’s \(\mathcal{D} \), does another dependency \(d \) (FD or MVD) follow from \(\mathcal{D} \)?

• Procedure
 • Start with the premise of \(d \), and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \(\mathcal{D} \) repeatedly
 • if we apply an FD, we infer equality of two symbols
 • if we apply an MVD, we infer more tuples
 • If we infer the conclusion of \(d \), we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

• In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

Another proof by chase

• In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

Counterexample by chase

• In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities

4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
 • Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 • \(R_1 \) has attributes \(X \cup Y \)
 • \(R_2 \) has attributes \(X \cup Z \) (where \(Z \) contains \(R \) attributes not in \(X \) or \(Y \))
 • Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User (uid, gid, place)
4NF violation: uid → gid

Member (uid, gid)
4NF

Visited (uid, place)
4NF

Summary

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 - You could have multiple keys though

- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic

Next: Project Mixer!