Relational Database Design Theory

Introduction to Databases

CompSci 316 Spring 2017
Announcements (Wed. Feb. 1)

• Homework #1 due Monday 02/06 (11:59 pm)
Review: Motivation

- **redundancy** is bad
 - user name is recorded multiple times
- Leads to **update, insertion, deletion anomalies**
- Have a systematic approach to detecting and removing redundancy in designs
- **Dependencies, decompositions, and normal forms**
Review: Functional dependencies

• A functional dependency (FD) $X \rightarrow Y$
 • X and Y are sets of attributes in a relation R
 • whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a_1</td>
<td>b</td>
<td>c_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d_2</td>
</tr>
<tr>
<td>a</td>
<td>b_1</td>
<td>c</td>
<td>d_2</td>
</tr>
</tbody>
</table>

$X \rightarrow Y$
$XY \rightarrow Z$

NOTE: You can only say which FDs do not hold in an instance
Cannot say which ones hold
FDs are given by schema : must be true for all instances (like keys)
Review: Attribute closure

• Given
 • R
 • a set of FD’s \mathcal{F} that hold in R, and
 • a set of attributes Z in R

• The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z
 • that is, $Z \rightarrow A_1A_2\ldots$

• $\{\text{gid, twitterid}\}^+$ = ?
 • twitterid \rightarrow uid -------------- Closure grows to $\{\text{gid, twitterid, uid}\}$
 • uid \rightarrow uname, twitterid -------------- Closure grows to $\{\text{gid, twitterid, uid, uname}\}$
 • uid, gid \rightarrow fromDate -------------- Closure is now all attributes in UserJoinsGroup
Review: Superkeys and Keys

Given a relation R and set of FD’s \mathcal{F}

- Compute K^+ with respect to \mathcal{F}

- If K^+ contains all the attributes of R, K is a super key

- If K is also minimal (no proper subset is a superkey), K is a key
Review: Motivation of BCNF decomposition

• Non-key FDs cause redundancy

Here $X \rightarrow Y$

Detect such FDs where X is not a superkey, and decompose into two relations

1. One relation gets X, Y (X is a superkey there! this makes it lossless)
2. The other one gets X, Z (in general $Z =$ everything else)

Note: you need to consider all FDs that can be inferred! not only the ones that are given
Review: BCNF decomposition example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

UserId (twitterid, uid)

BCNF

UserJoinsGroup' (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname

twitterid, gid → fromDate

UserName (twitterid, uname)

BCNF

Member (twitterid, gid, fromDate)

BCNF

uid → uname, twitterid
twitterid → uid
uid, gid → fromDate

apply Armstrong’s axioms and rules!
Lossy and Lossless Decomposition

Check yourself!
if in one of the two new relations, the common join attributes is a superkey, then lossless
Review: Multi-valued Dependency motivation

- **User**

 (uid, gid, place)

- No FD like uid → gid or uid → place

- Still redundancy

- Given a user, gid and place are independent

 e.g. given uid = 456, all combinations exist for

 \((abc, gov) \times (Springfield, Morocco)\)
Multivalued dependencies

- A multivalued dependency (MVD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \).

- \(X \rightarrow Y \) means the following:
 - Whenever two rows in \(R \) agree on all the attributes of \(X \),
 - then we can swap their \(Y \) components and get two rows that are also in \(R \).

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b_1)</td>
<td>(c_1)</td>
</tr>
<tr>
<td>(a)</td>
<td>(b_2)</td>
<td>(c_2)</td>
</tr>
<tr>
<td>(a)</td>
<td>(b_2)</td>
<td>(c_1)</td>
</tr>
<tr>
<td>(a)</td>
<td>(b_1)</td>
<td>(c_2)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>
Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If $X \rightarrow Y$, then $X \rightarrow \text{attrs}(R) - X - Y$
- MVD augmentation:
 If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity:
 If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
- Replication (FD is MVD):
 If $X \rightarrow Y$, then $X \rightarrow Y$
- Coalescence:
 If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase

• Given a set of FD’s and MVD’s \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D}?

• Procedure
 • Start with the premise of d, and treat them as “seed” tuples in a relation
 • Apply the given dependencies in \mathcal{D} repeatedly
 • If we apply an FD, we infer equality of two symbols
 • If we apply an MVD, we infer more tuples
 • If we infer the conclusion of d, we have a proof
 • Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

• In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Need:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow C$</td>
<td>a</td>
<td>b_1</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>a</td>
<td>b_2</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>
Another proof by chase

• In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have: (A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_1)</td>
</tr>
<tr>
<td>(a)</td>
<td>(b_2)</td>
<td>(c_2)</td>
<td>(d_2)</td>
</tr>
</tbody>
</table>

| Need: \(c_1 = c_2 \) |

\(A \rightarrow B \quad b_1 = b_2 \)

\(B \rightarrow C \quad c_1 = c_2 \)

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities.
Counterexample by chase

In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_2</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
</tbody>
</table>

Have: $A \rightarrow BC$

Need: $b_1 = b_2$ ✗

Countercexample!

Note: the FD must hold on all instances, so showing one instance as a counterexample suffices!
4NF

A relation R is in **Fourth Normal Form (4NF)** if
- For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
- That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

4NF is stronger than BCNF
- Because every FD is also a MVD
- why? because trivially if two tuples have same X value, they also have the same Y value, no question in swapping the Y values!
4NF decomposition algorithm

• Find a 4NF violation
 • A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$
 • R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless
4NF decomposition example

User $(uid, gid, place)$

4NF violation: $uid \rightarrow gid$

Member (uid, gid)

4NF

<table>
<thead>
<tr>
<th>uid</th>
<th>gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>dps</td>
</tr>
<tr>
<td>456</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>gov</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Visited $(uid, place)$

4NF

<table>
<thead>
<tr>
<th>uid</th>
<th>place</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Springfield</td>
</tr>
<tr>
<td>142</td>
<td>Australia</td>
</tr>
<tr>
<td>456</td>
<td>Springfield</td>
</tr>
<tr>
<td>456</td>
<td>Morocco</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Summary

• Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 • You could have multiple keys though

• Other normal forms
 • 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 • 2NF: Slightly more relaxed than 3NF
 • 1NF: All column values must be atomic
Next: Project Mixer!