Query Processing

Introduction to Databases
CompSci 316 Fall 2017

Announcements (Mon., Mar. 20)

- Homework #3
 - 3.1 and 3.2 are due on Wednesday March 22
- Project
 - Milestone 2 due next Monday March 27
 - Feedback posted on private piazza threads

Where are we?

- We are covering DB internals and query processing
- So far:
 - Index: mostly B+ tree
- Today:
 - finish query processing and join algorithms

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time
 - Often not the “best choice”
 - Optimizer tries NOT to select a “bad choice”

Notation

- Relations: \(R, S \)
- Tuples: \(r, s \)
- Number of tuples: \(|R|, |S| \)
- Number of disk blocks: \(B(R), B(S) \)
- Number of memory blocks available: \(M \)
- Cost metric
 - Number of I/O’s
 - Memory requirement
- We do not count the cost of final write to disk
- Do not try to memorize the formulas for cost estimation!
 - understand the logic
 - recall the diagram of disk and memory on whiteboard
Scanning-based algorithms

- **Table scan**
 - Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
 - I/O's: \(B(R) \)
 - Trick for selection: stop early if it is a lookup by key
 - Memory requirement: 2
 - Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

- **Nested-loop join**
 - \(R \bowtie_p S \)
 - For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - \(R \) is called the outer table; \(S \) is called the inner table
 - I/O's: \(B(R) + |R| \cdot B(S) \)
 - Memory requirement: 3
 - Improvement: block-based nested-loop join
 - For each block of \(R \), for each block of \(S \):
 - For each \(r \) in the \(R \) block, for each \(s \) in the \(S \) block:
 - I/O's: \(B(R) + B(R) \cdot B(S) \)
 - Memory requirement: same as before

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory
 - I/O's: \(B(R) + \frac{|R|}{M} \cdot B(S) \)
 - Or, roughly: \(B(R) \cdot \frac{B(S)}{M} \)
 - Memory requirement: \(M \) (as much as possible)
 - Which table would you pick as the outer?

Sorting-based algorithms

- **External merge sort**
 - Remember (internal-memory) merge sort?
 - Problem: sort \(R \), but \(R \) does not fit in memory
 - **Pass 0**: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 - **Pass 1**: merge \((M - 1) \) level-0 runs at a time, and write out a level-1 run
 - **Pass 2**: merge \((M - 1) \) level-1 runs at a time, and write out a level-2 run
 - Final pass produces one sorted run
Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\lfloor \log_2 M \rfloor$ level-0 sorted runs
- Pass i: merge $(M - 1)$ level-$(i - 1)$ runs at a time, and write out a level-i run
 - $(M - 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs = $\lceil \frac{\# \text{of level-} (i - 1) \text{runs}}{M - 1} \rceil$
- Final pass produces one sorted run

Performance of external merge sort

- Number of passes: $\lceil \log_{M - 1} \left(\frac{B(R)}{M} \right) \rceil + 1$
- I/O’s
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O(B(R) \times \log_B(B(R)))$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
 - More sequential I/O’s
 - Trade-off: larger cluster → smaller fan-in (more passes)

Sort-merge join

$R \bowtie_{R.A=S.B} S$

- Sort R and S by their join attributes; then merge
 - r, s = the first tuples in sorted R and S
 - Repeat until one of R and S is exhausted:
 - If $r.A > s.B$ then s = next tuple in S
 - Else if $r.A < s.B$ then r = next tuple in R
 - Else output all matching tuples, and r, s = next in R and S
- I/O’s: sorting + $2B(R) + 2B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

R:
- $r_1.A = 1$
- $r_2.A = 3$
- $r_3.A = 3$
- $r_4.A = 5$
- $r_5.A = 7$
- $r_6.A = 7$
- $r_7.A = 8$

S:
- $s_1.B = 1$
- $s_2.B = 2$
- $s_3.B = 3$
- $s_4.B = 3$
- $s_5.B = 8$

$R \bowtie_{R.A=S.B} S$:
- r_1s_1
- r_2s_3
- r_2s_4
- r_3s_3
- r_3s_4
- r_7s_5
Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of SMJ

- If SMJ completes in two passes:
 - I/Os: $3 \cdot (B(R) + B(S))$
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{N} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 - Trick: produce "partial" aggregate values in each run, and combine them during merge
 - This trick doesn't always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

Hash join

$R \bowtie_{R.A=S.B} S$

- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join
 - Nested-loop join considers all slots
 - Hash join considers only those along the diagonal!

Partitioning phase

- Partition R and S according to the same hash function on their join attributes
Probing phase

• Read in each partition of R, stream in the corresponding partition of S, join
 • Typically build a hash table for the partition of R
 • Not the same hash function used for partition, of course: why?

<table>
<thead>
<tr>
<th>Disk</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>R partitions</td>
<td>S partitions</td>
</tr>
<tr>
<td>load</td>
<td>stream</td>
</tr>
</tbody>
</table>

For each S tuple, probe and join

Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{\#1}$
 • $M > \sqrt[3]{B(R)} + 1$
 • We can always pick R to be the smaller relation, so:
 $M > \min(B(R), B(S)) + 1$

End of Lecture 16