Query Processing

Introduction to Databases
CompSci 316 Fall 2017
Announcements (Mon., Mar. 20)

• Homework #3
 • 3.1 and 3.2 are due on Wednesday March 22

• Project
 • Milestone 2 due next Monday March 27
 • Feedback posted on private piazza threads
Where are we?

• We are covering DB internals and query processing
• So far:
 • Index: mostly B+ tree
• Today:
 • finish query processing and join algorithms
Query Processing
Overview

• Many different ways of processing the same query
 • Scan? Sort? Hash? Use an index?
 • All have different performance characteristics and/or make different assumptions about data

• Best choice depends on the situation
 • Implement all alternatives
 • Let the **query optimizer** choose at run-time
 • Often not the “best choice”
 • Optimizer tries NOT to select a “bad choice”
Notation

• Relations: R, S
• Tuples: r, s
• Number of tuples: $|R|, |S|$
• Number of disk blocks: $B(R), B(S)$
• Number of memory blocks available: M
• Cost metric
 • Number of I/O’s
 • Memory requirement
• We do not count the cost of final write to disk

• Do not try to memorize the formulas for cost estimation!
 • understand the logic
 • recall the diagram of disk and memory on whiteboard
Scanning-based algorithms
Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination

- I/O’s: $B(R)$
 - Trick for selection: stop early if it is a lookup by key

- Memory requirement: 2

- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator
Nested-loop join

\[R \bowtie_p S \]

- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
- \(R \) is called the outer table; \(S \) is called the inner table
- I/O’s: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: 3

Improvement: block-based nested-loop join

- For each block of \(R \), for each block of \(S \):
 - For each \(r \) in the \(R \) block, for each \(s \) in the \(S \) block: ...
- I/O’s: \(B(R) + B(R) \cdot B(S) \)
- Memory requirement: same as before
More improvements

• Stop early if the key of the inner table is being matched

• Make use of available memory
 • Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
 • I/O’s: $B(R) + \left\lceil \frac{B(R)}{M-2} \right\rceil \cdot B(S)$
 • Or, roughly: $B(R) \cdot B(S)/M$
 • Memory requirement: M (as much as possible)

• Which table would you pick as the outer?
Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg
Remember (internal-memory) merge sort?

Problem: sort R, but R does not fit in memory

- **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run

- **Pass 1**: merge $(M - 1)$ level-0 runs at a time, and write out a level-1 run

- **Pass 2**: merge $(M - 1)$ level-1 runs at a time, and write out a level-2 run

...

- **Final pass** produces one sorted run
Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Pass 0
 • 1, 7, 4 → 1, 4, 7
 • 5, 2, 8 → 2, 5, 8
 • 9, 6, 3 → 3, 6, 9
• Pass 1
 • 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 • 3, 6, 9
• Pass 2 (final)
 • 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9
Analysis

• **Pass 0**: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left\lceil \frac{B(R)}{M} \right\rceil$ level-0 sorted runs

• **Pass i**: merge $(M - 1)$ level-$(i - 1)$ runs at a time, and write out a level-i run
 - $(M - 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs = $\left\lceil \frac{\text{# of level-} (i-1) \text{ runs}}{M-1} \right\rceil$

• **Final pass** produces one sorted run
Performance of external merge sort

• Number of passes: \[\log_{M-1} \left(\frac{B(R)}{M} \right) + 1 \]

• I/O’s
 • Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 • Subtract \(B(R) \) for the final pass
 • Roughly, this is \(O(B(R) \times \log_M B(R)) \)

• Memory requirement: \(M \) (as much as possible)
Some tricks for sorting

• Double buffering
 • Allocate an additional block for each run
 • Overlap I/O with processing
 • Trade-off: smaller fan-in (more passes)

• Blocked I/O
 • Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 • More sequential I/O’s
 • Trade-off: larger cluster → smaller fan-in (more passes)
Sort-merge join

\[R \bowtie_{R.A=S.B} S \]

• Sort \(R \) and \(S \) by their join attributes; then merge
 \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 Repeat until one of \(R \) and \(S \) is exhausted:
 If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 else output all matching tuples, and
 \(r, s = \) next in \(R \) and \(S \)

• I/O’s: sorting + 2\(B(R) \) + 2\(B(S) \)
 • In most cases (e.g., join of key and foreign key)
 • Worst case is \(B(R) \cdot B(S) \): everything joins
Example of merge join

\[R \bowtie_{R.A = S.B} S: \]

\[r_{1} \]
\[r_{2} \]
\[r_{3} \]
\[r_{4} \]
\[r_{5} \]
\[r_{6} \]
\[r_{7} \]

\[s_{1} \]
\[s_{2} \]
\[s_{3} \]
\[s_{4} \]
\[s_{5} \]
Optimization of SMJ

- **Idea**: combine join with the (last) merge phase of merge sort
- **Sort**: produce sorted runs for R and S such that there are fewer than M of them total
- **Merge and join**: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!
Performance of SMJ

• If SMJ completes in two passes:
 • I/O’s: \(3 \cdot (B(R) + B(S))\)
 • Memory requirement
 • We must have enough memory to accommodate one block from each run: \(M > \frac{B(R)}{M} + \frac{B(S)}{M} \)
 • \(M > \sqrt{B(R) + B(S)} \)

• If SMJ cannot complete in two passes:
 • Repeatedly merge to reduce the number of runs as necessary before final merge and join

End of lecture 16
Other sort-based algorithms

• Union (set), difference, intersection
 • More or less like SMJ

• Duplication elimination
 • External merge sort
 • Eliminate duplicates in sort and merge

• Grouping and aggregation
 • External merge sort, by group-by columns
 • Trick: produce “partial” aggregate values in each run, and combine them during merge
 • This trick doesn’t always work though
 • Examples: SUM(DISTINCT …), MEDIAN(…)

21
Hashing-based algorithms

Hash join

\[R \bowtie_{R.A=S.B} S \]

- Main idea
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Nested-loop join considers all slots

Hash join considers only those along the diagonal!
Partitioning phase

• Partition R and S according to the same hash function on their join attributes

R → Memory → Disk

$M - 1$ partitions of R

Same for S
Probing phase

• Read in each partition of R, stream in the corresponding partition of S, join
 • Typically build a hash table for the partition of R
 • Not the same hash function used for partition, of course! why?

For each S tuple, probe and join
Performance of (two-pass) hash join

• If hash join completes in two passes:
 • I/O’s: $3 \cdot (B(R) + B(S))$
 • Memory requirement:
 • In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{M-1}$
 • $M > \sqrt{B(R)} + 1$
 • We can always pick R to be the smaller relation, so:
 $$M > \sqrt{\min(B(R), B(S))} + 1$$

End of Lecture 16