Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ,

$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R,S\}$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

• (\Rightarrow): Given a standard TM M, then there exists a TM M' with stay option such that $L(M) = L(M')$.

\[\text{just use the same TM} \]
• (\iff): Given a TM M with stay option, construct a standard TM M' such that $L(M) = L(M')$.

$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

$M' = (Q', \Sigma, \Gamma, \delta', q'_0, B, F')$

For each transition in M with a move (L or R) put the transition in M'. So, for

$$\delta(q_i, a) = (q_j, b, L \text{ or } R)$$

put into δ'

For each transition in M with S (stay-option), move right and move left. So for

$$\delta(q_i, a) = (q_j, b, S)$$

$L(M) = L(M')$. QED.
Definition: A *multiple track* TM divides each cell of the tape into k cells, for some constant k.

A 3-track TM:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A multiple track TM starts with the input on the first track, all other tracks are blank.

$$
\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times \Gamma \times \Gamma) \times \Sigma \times \Gamma
$$
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists a TM M' with multiple tracks such that $L(M) = L(M')$.

• (\Leftarrow): Given a TM M with multiple tracks there exists a standard TM M' such that $L(M) = L(M')$.

Encode each combination of symbols

Now one symbol for each col of standard TM on that
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• \((\Rightarrow)\): Given standard TM \(M \) there exists a TM \(M' \) with semi-infinite tape such that \(L(M) = L(M') \).
 Given \(M \), construct a 2-track semi-infinite TM \(M' \)
Given a TM M with semi-infinite tape there exists a standard TM M' such that $L(M) = L(M')$.

(W)
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ: $Q \times \Gamma^n \rightarrow Q \times \Gamma^3 \times \{L, R\}^3$
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (⇐): Given standard TM M, construct a multitape TM M’ such that L(M)=L(M’).

• (⇒): Given n-tape TM M construct a standard TM M’ such that L(M)=L(M’).
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
```

Input tape (read only)

```
Control Unit
```

```
<table>
<thead>
<tr>
<th>b</th>
<th>b</th>
<th>d</th>
</tr>
</thead>
</table>
```

Read/write tape
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

- \((\Rightarrow)\): Given standard TM \(M\) there exists an off-line TM \(M'\) such that \(L(M)=L(M')\).

- \((\Leftarrow)\): Given an off-line TM \(M\) there exists a standard TM \(M'\) such that \(L(M)=L(M')\).

\[
\begin{array}{cccc}
\# & a & b & c \\
\# & 1 \\
\# & b & b & d \\
\# & 1 \\
\end{array}
\]
Running Time of Turing Machines

Example:

Given $L=\{a^n b^n c^n | n > 0\}$. Given $w \in \Sigma^*$, is w in L?

Write a 3-tape TM for this problem.
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

Define δ:
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• (⇒): Given standard TM M, construct a 2-dim-tape TM M’ such that $L(M) = L(M')$.

• (⇐): Given 2-dim tape TM M, construct a standard TM M’ such that $L(M) = L(M')$.
Construct M'
Definition: A *nondeterministic* Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

• (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that $L(M) = L(M')$.

• (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M' such that $L(M) = L(M')$.

Construct M' to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

\[\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\} \]

Being in state \(q_0 \) with input abc.
The one move has three choices, so 2 additional machines are started.

```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>q1</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>q2</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>q1</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
```

\[S(q_0, a) = \{ (q_1, b, R), (q_2, a, L), (q_1, c, R) \} \]

\[S = ? \]
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ:

$$Q \times \Sigma \times (\Gamma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow Q \times \Gamma^* \times \Gamma^*$$
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n \mid n > 0 \} \)
2. \(L = \{ a^n b^n a^n b^n \mid n > 0 \} \)
3. \(L = \{ w \in \Sigma^* \mid \text{number of a’s equals number of b’s equals number of c’s} \}, \Sigma = \{ a, b, c \} \)
Theorem: Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \(\Rightarrow\): Given 2-stack NPDA, construct a 3-tape TM \(M'\) such that \(L(M) = L(M')\).
Given a standard TM M, construct a 2-stack NPDA M' such that $L(M) = L(M')$.
Universal TM - a programmable TM

• Input:
 – an encoded TM M
 – input string w

• Output:
 – Simulate M on w
An encoding of a TM

Let TM $M = \{Q, \Sigma, \Gamma, \delta, q_1, B, F\}$

- $Q = \{q_1, q_2, \ldots, q_n\}$
 Designate q_1 as the start state.
 Designate q_2 as the only final state.
 q_n will be encoded as n 1’s

- Moves
 L will be encoded by 1
 R will be encoded by 11

- $\Gamma = \{a_1, a_2, \ldots, a_m\}$
 where a_1 will always represent the B.
For example, consider the simple TM:

\[
\begin{array}{c}
a; a, R \\
\downarrow \\
q_1 \\
\downarrow \\
b; a, L \\
q_2
\end{array}
\]

\(\Gamma = \{ B, a, b \} \) which would be encoded as

\[
\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}
\]

The TM has 2 transitions,

\[
\delta(q_1, a) = (q_1, a, R), \quad \delta(q_1, b) = (q_2, a, L)
\]

which can be represented as 5-tuples:

\[
(q_1, a, q_1, a, R), (q_1, b, q_2, a, L)
\]

Thus, the encoding of the TM is:

\[
0101101011011010111011011010
\]
For example, the encoding of the TM above with input string “aba” would be encoded as:

\[\underline{0101101011011011011010110100110110110}\]

Input for universal TM

Question: Given \(w \in \{0, 1\}^+ \), is \(w \) the encoding of a TM?

Yes write a program to verify

\[\underline{01011011110} \quad \text{NO}\]
\[\underline{0100010101010} \quad \text{NO}\]
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)
 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)
 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a) = (q,b,R)$.)
 (c) apply the move
 • write on tape 2 (write b)
 • move on tape 2 (move right)
 • write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

• $S = \{ \text{positive odd integers} \}$
 \[\text{yes} \]

• $S = \{ \text{real numbers} \}$
 \[\text{not} \]

• $S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\}$
 \[\text{yes} \]

• $S = \{ \text{TM’s} \}$
 \[\text{yes} \]

• $S = \{ (i,j) \mid i,j > 0, \text{are integers} \}$
 \[\text{yes, will pack} \]

$\exists \not= 0, 1, 2$

Repeat to generate the next string from $\exists*$

- if valid TM, then that’s next one
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{c}
\text{[a b c]} \\
\uparrow
\end{array}
\]

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\(M=(Q, \Sigma, \Gamma, \delta, q_0, B, F) \) such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of ‘[]’s. Thus,
\(\delta(q_i, [) = (q_j, [, R) \), and \(\delta(q_i,]) = (q_j,], L) \)

Definition: Let \(M \) be a LBA.
\(L(M) = \{w \in (\Sigma - \{[,,]\})^* | q_0[w] \vdash [x_1q_fx_2]\} \)

Example: \(L = \{a^n b^n c^n | n > 0\} \) is accepted by some LBA