Record Linkage

Everything Data

CompSci 216 Spring 2019
Announcements Thu, Jan 31

• HW03 will be posted later tonight.

• We will begin by discussing HW solutions.

• If you have “multiple” submissions, the latest submission will be graded.
Recap: **Querying Relational Databases in SQL**

SELECT columns or expressions

(or for each group of them if query has grouping/aggregation)

FROM tables

1. Generate all combinations of rows, one from each table; each combination forms a “wide row”

WHERE conditions

2. Filter—keep only “wide rows” satisfying conditions

GROUP BY columns

3. Group—“wide rows” with matching values for columns go into the same group

ORDER BY output columns;

4. Sort the output rows

5. Compute one output row for each “wide row”
Problem

• Forbes magazine article: “Wall Street’s favorite senators”
Problem

• Forbes magazine article: “Wall Street’s favorite senators”

• What are their ages?

Chris, Dodd, Democrat, CT, 35.7, 9161489
Richard, Shelby, Republican, AL, 33.4, 2542878
Charles, Schumer, Democrat, NY, 32.8, 3255362
Tom, Carper, Democrat, DE, 32.5, 1453446
Mike, Crapo, Republican, ID, 32.2, 946531
Bob, Bennett, Republican, UT, 32.3, 1078302
Jack, Reed, Democrat, RI, 31.5, 1280500
Tim, Johnson, Democrat, SD, 29.1, 1396308
Mike, Enzi, Republican, WY, 25.1, 564100
Joe, Lieberman, Independent, CT, 25, 7878838
Solution

• Join with the persons table (from govtrack)

• But there is no key to join on …
Record Linkage

• Problem of finding duplicate entities across different sources (or even within a single dataset).

Record linkage

From Wikipedia, the free encyclopedia
(Redirected from Entity resolution)

Record linkage (RL) refers to the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, databases). Record linkage is necessary when joining data sets based on entities that may or may not share a common identifier (e.g., database key, URI, National identification number), as may
Ironically, Record Linkage has many names

- Coreference resolution
- Reference reconciliation
- Fuzzy match
- Object identification
- Deduplication
- Approximate match
- Identity uncertainty
- Entity Resolution
- Object consolidation
- Merge/purge
- Hardening soft databases
- Reference matching
- Doubles
- Duplicate detection
- Household matching
- Householding
Motivating Example 1: Web
Motivating Example 1: Web

Auto Pro to Call

<table>
<thead>
<tr>
<th>Rating: ★★★★ ★</th>
<th>(6 Reviews)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: (919) 967-2271</td>
<td></td>
</tr>
<tr>
<td>Address: 1809 Fordham Blvd, Chapel Hill, NC 27514</td>
<td></td>
</tr>
<tr>
<td>Website: www.autoprotocall.com</td>
<td></td>
</tr>
</tbody>
</table>

These guys are crooks. They wanted $100 just to put the meter on my check engine light a task that takes 2 minutes. $100 just to diagnose it not to do any repairs. Places like Advance Auto... more

Swedish Imports

| Phone: (919) 493-4645 |
| Address: 5404 Durham Chapel Hill Blvd, Durham, NC 27707 |
| Website: swedishimports.net |

N-Tune Automotive

| Merchant verified |
| Phone: (919) 401-2612 |
| Address: 411 Erwin Rd, Durham, NC 27707 |
| Website: www.ntuneautomotive.com |

Auto Pro to Call

| Rating: ★★★★ ★ | (5 Reviews) |
| Phone: (919) 967-2271 |
| Address: 1809 Fordham Blvd, Chapel Hill, NC 27514 |
| Website: www.autoprotocall.com |

My family has been taking our cars to them for years since they were Chapel Hill Tire and they have always done great work at a fair price. You can trust them with your car; years ago a... more

Raleigh Auto Repair

A & J Automotive since 1996
Dependable Service, Honest Answers
www.ajautorepair.com

Auto Mechanic School

Become a mechanic with the Auto Repair Technician program.
www.pennfoster.edu
Motivating Example 2: Network Science

- Measuring the topology of the internet ... using traceroute
Figure 2. The IP alias resolution problem. Paraphrasing Fig. 4 of [50], traceroute does not list routers (boxes) along paths but IP addresses of input interfaces (circles), and alias resolution refers to the correct mapping of interfaces to routers to reveal the actual topology. In the case where interfaces 1 and 2 are aliases, (b) depicts the actual topology while (a) yields an “inflated” topology with more routers and links than the real one.
IP Aliasing Problem [Willinger et al. 2009]

Figure 3. The IP alias resolution problem in practice. This is re-produced from [48] and shows a comparison between the Abilene/Internet2 topology inferred by Rocketfuel (left) and the actual topology (top right). Rectangles represent routers with interior ovals denoting interfaces. The histograms of the corresponding node degrees are shown in the bottom right plot. © 2008 ACM.
And many many more examples

• Linking Census Records
• Public Health
• Medical records
• Web search – query disambiguation
• Comparison shopping
• Maintaining customer databases
• Law enforcement and Counter-terrorism
• Scientific data
• Genealogical data
• Bibliographic data
Opportunity

http://lod-cloud.net/
Back to our example

• Join with the persons table (from govtrack)

• But there is no key to join on …

• What about (firstname, lastname)?
Attempt 1:

SELECT w.*, date_part('year', current_date) - date_part('year', p.birthday) AS age
FROM wallst w, persons p
WHERE w.first_name = p.first_name
 and w.last_name = p.last_name;
Problems

• Join condition is too specific
 – Nicknames used instead of real first names
Attempt 2:

- Join on Last name + Age < 100 (senator must be alive)

```
SELECT w.*, date_part('year', current_date) - date_part('year', p.birthday) AS age
FROM wallst w, persons p
WHERE w.lastname = p.last_name and
date_part('year', current_date) - date_part('year', p.birthday) < 100;
```
Problem:

• Join condition is too inclusive
 – Many individuals share the same last name.

<table>
<thead>
<tr>
<th>Surname</th>
<th>Approx #</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>2.4 M</td>
<td>1</td>
</tr>
<tr>
<td>Johnson</td>
<td>1.8 M</td>
<td>2</td>
</tr>
<tr>
<td>Williams</td>
<td>1.5 M</td>
<td>3</td>
</tr>
<tr>
<td>Brown</td>
<td>1.4 M</td>
<td>4</td>
</tr>
<tr>
<td>Jones</td>
<td>1.4 M</td>
<td>5</td>
</tr>
</tbody>
</table>

http://www.census.gov/genealogy/www/data/2000surnames/
“Where is Joe Liebermen ?”

• Spelling mistake
 – Liebermen vs Lieberman

• Need an approximate matching condition!
Levenshtein (or edit) distance

- The minimum number of character edit operations needed to turn one string into the other.

LIEBERMAN
LIEBERMEN

- Substitute A to E. Edit distance = 1
Levenshtein (or edit) distance

- Distance between two string s and t is the shortest sequence of **edit commands** that transform s to t.

- Commands:
 - Copy character from s to t (cost = 0)
 - Delete a character from s (cost = 1)
 - Insert a character into t (cost = 1)
 - Substitute one character for another (cost = 1)

Costs can be different
Levenshtein (or edit) distance

Ashwin Machanavajjhala
Aswhin Maachanavajjhala
Levenshtein (or edit) distance

String s: Ashwin Machanavajjhala

String t: Aswhin Maachanavajjghala

Total cost: 4
Computing the edit distance

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>S</th>
<th>W</th>
<th>A</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost of changing

- “G” → “A”
- “ASWH” → “AS”
Computing the edit distance

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>S</th>
<th>W</th>
<th>A</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost of changing “ASW” → “AS”:

Minimum of:
- Cost of “AS” → “AS” + 1 (delete W)
- Cost of “ASW” → “A” + 1 (insert S)
- Cost of “AS” → “A” + 1 (substitute W with S)
Computing the edit distance

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>S</th>
<th>W</th>
<th>A</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>W</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Computing the edit distance

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>S</th>
<th>W</th>
<th>A</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>W</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Remember the minimum in each step and retrace your path.
Edit Distance Variants

• Needleman-Munch
 – Different costs for each operation

• Affine Gap distance
 – John Reed vs John Francis “Jack” Reed
 – Consecutive inserts cost less than the first insert.
Back to our example … Attempt 3

SELECT w.firstname, w.lastname, w.state, w.party, p.first_name, p.last_name, date_part('year', current_date) - date_part('year', p.birthday) AS age
FROM wallst w, persons p
WHERE levenshtein(w.lastname, p.last_name) <= 1
and date_part('year', current_date) - date_part('year', p.birthday) < 100;
Jaccard similarity

• Useful similarity function for sets
 – (and for… long strings).

• Let A and B be two sets
 – Words in two documents
 – Friends lists of two individuals

$$\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}$$
Jaccard similarity for names

- Use character trigrams

LIEBERMAN = \{GGL, GLI, LIE, IEB, EBE, BER, ERM, RMA, MAN, ANG, NGG\}
LIEBERMEN = \{GGL, GLI, LIE, IEB, EBE, BER, ERM, RME, MEN, ENG, NGG\}

\[\text{Jaccard}(s,t) = \frac{8}{14} \]
Attempt 4:

```
SELECT w.firstname, w.lastname, w.state, w.party, 
p.first_name, p.last_name, date_part('year', 
current_date) - date_part('year', p.birthday) AS age
FROM wallst w, persons p
WHERE similarity(w.lastname, p.last_name) >= 0.5 
and date_part('year', current_date) -
date_part('year', p.birthday) < 100;
```
Translation / Substitution Tables

- Strings that are usually used interchangeably
 - New York vs Big Apple
 - Thomas vs Tom
 - Robert vs Bob
select w.firstname, w.lastname, w.state,
p.first_name, p.last_name, date_part('year',
current_date) - date_part('year', p.birthday) AS age
from wallst w, persons p
where levenshtein(w.lastname, p.last_name) <= 1
and date_part('year', current_date) -
date_part('year', p.birthday) < 100
and (w.firstname = p.first_name or w.firstname IN
(select n.nickname from nicknames n where
n.firstname = p.first_name));
Almost there …

• Tim matches both Timothy and Tim
 – Can fix it by matching on STATE
 – *Try it on your own … 😊*
Summary of Similarity Methods

Easiest and most efficient

• Equality on a boolean predicate
• Edit distance
 – Levenshtein, Affine
• Set similarity
 – Jaccard
• Vector Based
 – Cosine similarity, TFIDF

• Translation-based
• Numeric distance between values
• Phonetic Similarity
 – Soundex, Metaphone
• Other
 – Jaro-Winkler, Soft-TFIDF, Monge-Elkan
Summary of Similarity Methods

- Equality on a boolean predicate
- Edit distance
 - Levenstein, Affine
- Set similarity
 - Jaccard
- Vector Based
 - Cosine similarity, TFIDF

Good for Text (reviews/tweets), sets, class membership, ...

Handle Typographical errors

Useful for abbreviations, alternate names.

- Translation-based
- Numeric distance between values
- Phonetic Similarity
 - Soundex, Metaphone
- Other
 - Jaro-Winkler, Soft-TFIDF, Monge-Elkan

Good for Names
Evaluating Record Linkage

• Hard to get all the matches to be exactly correct in real world problems
 – As we saw in real examples

• Need to quantify how good the matching is.
Property Testing

• Consider a universe U of objects
 – Documents (in web search)
 – Pairs of records (in record linkage)

• Suppose you want to identify a subset M in U that satisfies a specific property
 – Relevance to a query (in web search)
 – Do the records match (in record linkage)
Property Testing

• Consider a universe U of objects
• Suppose you want to identify a subset M in U that satisfies a specific property

• Let A be an (imperfect) algorithm that guesses whether or not an element in U satisfies the property
 – Let M_A be the subset of objects that A identifies as satisfying the property.
Property Testing

<table>
<thead>
<tr>
<th>Algorithm Guess</th>
<th>Real World</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfies P</td>
</tr>
<tr>
<td>Satisfies P</td>
<td>True positives (TP)</td>
</tr>
<tr>
<td>Doesn’t satisfy P</td>
<td>False negatives (FN)</td>
</tr>
</tbody>
</table>

Crying Wolf!

M_A
$U - M_A$

M
$U - M$
Venn diagram view

True positives (TP)

True negatives (TN)

False negatives (FN)

False positives (FP)
Error: Precision / Recall

Precision = \(\frac{TP}{TP + FP} \)

= \(\frac{|M \cap M_A|}{|M_A|} \)

fraction of answers returned by A that are correct

Recall = \(\frac{TP}{TP + FN} \)

= \(\frac{|M \cap M_A|}{|M|} \)

fraction of correct answers that are returned by A
Error: F-measure

\[
\text{Precision} = \frac{|M \cap M_A|}{|M_A|}
\]

\[
\text{Recall} = \frac{|M \cap M_A|}{|M|}
\]

\[
\text{F1 score} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]
Example

- M:

<table>
<thead>
<tr>
<th>firstname</th>
<th>lastname</th>
<th>state</th>
<th>first_name</th>
<th>last_name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Bennett</td>
<td>UT</td>
<td>Robert</td>
<td>Bennett</td>
<td>81</td>
</tr>
<tr>
<td>Tom</td>
<td>Carper</td>
<td>DE</td>
<td>Thomas</td>
<td>Carper</td>
<td>67</td>
</tr>
<tr>
<td>Mike</td>
<td>Crapo</td>
<td>ID</td>
<td>Michael</td>
<td>Crapo</td>
<td>63</td>
</tr>
<tr>
<td>Chris</td>
<td>Dodd</td>
<td>CT</td>
<td>Christopher</td>
<td>Dodd</td>
<td>70</td>
</tr>
<tr>
<td>Mike</td>
<td>Enzi</td>
<td>WY</td>
<td>Michael</td>
<td>Enzi</td>
<td>70</td>
</tr>
<tr>
<td>Tim</td>
<td>Johnson</td>
<td>SD</td>
<td>Tim</td>
<td>Johnson</td>
<td>68</td>
</tr>
<tr>
<td>Joe</td>
<td>Lieberman</td>
<td>CT</td>
<td>Joseph</td>
<td>Lieberman</td>
<td>72</td>
</tr>
<tr>
<td>Jack</td>
<td>Reed</td>
<td>RI</td>
<td>John</td>
<td>Reed</td>
<td>65</td>
</tr>
<tr>
<td>Charles</td>
<td>Schumer</td>
<td>NY</td>
<td>Charles</td>
<td>Schumer</td>
<td>64</td>
</tr>
<tr>
<td>Richard</td>
<td>Shelby</td>
<td>AL</td>
<td>Richard</td>
<td>Shelby</td>
<td>80</td>
</tr>
</tbody>
</table>

(10 rows)
Example:

Algorithm A:

```
select * from wallst w, persons p
where w.lastname = p.last_name and
date_part('year', current_date) - date_part('year', p.birthday) < 100
and (w.firstname = p.first_name or w.firstname IN
    (select n.nickname from nicknames n where
    n.firstname = p.first_name));
```
Example

- M_A:

<table>
<thead>
<tr>
<th>firstname</th>
<th>lastname</th>
<th>state</th>
<th>first_name</th>
<th>last_name</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>Bennett</td>
<td>UT</td>
<td>Robert</td>
<td>Bennett</td>
<td>81</td>
</tr>
<tr>
<td>Charles</td>
<td>Schumer</td>
<td>NY</td>
<td>Charles</td>
<td>Schumer</td>
<td>64</td>
</tr>
<tr>
<td>Chris</td>
<td>Dodd</td>
<td>CT</td>
<td>Christopher</td>
<td>Dodd</td>
<td>70</td>
</tr>
<tr>
<td>Jack</td>
<td>Reed</td>
<td>RI</td>
<td>John</td>
<td>Reed</td>
<td>65</td>
</tr>
<tr>
<td>Mike</td>
<td>Crapo</td>
<td>ID</td>
<td>Michael</td>
<td>Crapo</td>
<td>63</td>
</tr>
<tr>
<td>Mike</td>
<td>Enzi</td>
<td>WY</td>
<td>Michael</td>
<td>Enzi</td>
<td>70</td>
</tr>
<tr>
<td>Richard</td>
<td>Shelby</td>
<td>AL</td>
<td>Richard</td>
<td>Shelby</td>
<td>80</td>
</tr>
<tr>
<td>Tim</td>
<td>Johnson</td>
<td>SD</td>
<td>Timothy</td>
<td>Johnson</td>
<td>68</td>
</tr>
<tr>
<td>Tim</td>
<td>Johnson</td>
<td>SD</td>
<td>Tim</td>
<td>Johnson</td>
<td>68</td>
</tr>
<tr>
<td>Tom</td>
<td>Carper</td>
<td>DE</td>
<td>Thomas</td>
<td>Carper</td>
<td>67</td>
</tr>
</tbody>
</table>

(10 rows)
Example

Precision = \frac{|M \cap M_A|}{|M_A|}
= \frac{9}{10} = 0.9

Recall = \frac{|M \cap M_A|}{|M|}
= \frac{9}{10} = 0.9

F1 score = 2 \frac{0.9 \times 0.9}{0.9 + 0.9} = 0.9
Summary

• Many interesting data analyses require reasoning across different datasets

• May not have access to keys that uniquely identify individual rows in both datasets
Summary

• Use combinations of attributes that are approximate keys (or quasi-identifiers)

• Use similarity measures for fuzzy or approximate matching
 – Levenshtein or Edit distance
 – Jaccard Similarity

• Use translation tables
Summary

• **Record Linkage is rarely perfect**
 – Missing attributes
 – Messy data errors
 – ...

• **Precision/Recall** is used to measure the quality of linkage.
The Ugly side of Record Linkage
[Sweeney IJUFKS 2002]

- Name
- SSN
- Visit Date
- Diagnosis
- Procedure
- Medication
- Sex
- Birth date
- Zip
- Total Charge

Medical Data
The Ugly side of Record Linkage
[Sweeney IJUFKS 2002]

- Name
- SSN
- Visit Date
- Diagnosis
- Procedure
- Medication
- Total Charge

- Name
- Address
- Date Registered
- Party affiliation
- Date last voted

- Governor of MA uniquely identified using ZipCode, Birth Date, and Sex.

Name linked to Diagnosis

Medical Data Voter List
The Ugly side of Record Linkage
[Sweeney IJUFKS 2002]

- Name
- SSN
- Visit Date
- Diagnosis
- Procedure
- Medication
- Total Charge

- Name
- Address
- Date Registered
- Party affiliation
- Date last voted

87% of US population uniquely identified using ZipCode, Birth Date, and Sex.

Medical Data Voter List

Quasi Identifier
(anonymous) browsing history → social network profiles.

Are you really anonymous online?

When you browse the web, you leave websites and advertisers. Although this information can lead to your real identity and expose your personal interests, there are steps you can take to make your browsing experience more private.

Test Results

These are the 15 Twitter users most likely to be you based on your digital footprint. Let us know if the test succeeded by clicking on one of the buttons below.