Lab #4: Introducing Classification

Everything Data
CompSci 216 Spring 2019
Announcements (Tue Feb 12)

• **HW 1 & 2 Graded**
 – refer to solutions in repo

• **Project team formation**
 – due in two weeks (Tuesday 2/26)
 – 5 is the ideal team size; talk to us if you need special arrangement
Format of this lab

• Introduction to classification
• Lab #4
 – Team challenge: extra credits!
• Discussion of Lab #4 (~5 minutes)
Introducing Lab #4

Classification problem example: Given the set of movies a user rated, and the user’s occupation, predict the user’s gender

![Table showing features and outcomes]

Accuracy = (# test records classified correctly) / (# test records)
Where is test data?

What if no test data is specified, or we don’t know the right answers?

• We can still evaluate our classifier by splitting the data given to us

Rookie mistake:
train and test using the same (whole) dataset
Lucky splits, unlucky splits

• What if a particular split gets lucky or unlucky?
• Should we tweak the heck out of our classification algorithm just for this split?

☞ Answer: cross-validation, a smart way to make best use of available data
r-fold cross-validation

- Randomly divide data into r groups (say 10)
- Hold out each group for testing; train on the remaining $r - 1$ groups
 - r train-test runs and r accuracy measurements
 - A better picture of performance
Three little classifiers

- `classifyA.py`: a “mystery” classifier
 - Read the code to see what it does
- `classifyB.py`: Naïve Bayes Classifier
 - Along the same line as Homework #4, 3(C)
- `classifyC.py`: k-Nearest-Neighbor Classifier
 - Given x, choose the k training data points closest to x; predict the majority class

http://www.weirdspace.dk/Disney/ThreeLittlePigs.htm
More on the kNN classifier

$k = 1$

Source: Daniel B. Neil’s slides for 90-866 at CMU
How do we determine nearest?

• Euclidean distance?
 – Two attributes x and y:
 \[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}. \]
 – Three attributes x, y, and z:
 \[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2} \]
 – and so on, but beware of the curse of dimensionality
Team work

1. Train-Test Runs and the Mystery of A
 (A) Which classifier seems to work best?
 (B) What exactly does A do?

2. Tweaking kNN
 (A) How does k affect accuracies on training vs. test data? Is big or small k better for this problem?
 (B) How does $k = 500$ compare with A?
Team challenge

The Evil SQL Splitters: find a train-test split such that the classifiers are great on training data but horrible on test

Redemption of Naïve Bayes: find a train-test split such that B beats A and C hands-down

- Extra credit worth 5% of a homework if $4 \times$ and B has $\geq 60\%$ accuracy; must get checked off in class