Clustering

Everything Data

CompSci 216 Spring 2019
Announcements (Thu. Feb 28)

• **Homework #7** will be posted today.

• Projects teams and number assignments will be posted tomorrow.

• Project material is uploaded on the course website
 – Document detailing deadlines, deliverables for milestones and project ideas
 – Sample project materials from 2018
Announcements (Thu. Feb 28)

• Project work in class on Tuesday (3/5)
 – Students from Spring 2018 will present their experience working on the 216 project.
 – Course staff will check-in with each team to answer questions about the project proposal.
 – Proposal is due Mar 5, 11:59 pm.
Geo-tags of tweets
Trending topics

• How would you compute trending topics?
 – Most frequent hashtags
 – Frequent keywords or phrases (which are not stopwords)
 – …

• But interesting trends in one region may not represent interesting trends in another.
Idea: Cluster tweets by geography

"geo_data_head10000_kmeans_10" using 1:2:3
Trending topics by geography

- We can now compute trending topics within each cluster (region).
Example: Market Segmentation

http://www.esriro.ro/library/fliers/pdfs/tapestry_segmentation.pdf#page=2
Example: Phylogenetic Trees
Other Examples

• Image segmentation
• Document clustering
• De-duplication …
Outline

• K-means Clustering

• Distance Metrics

• Using distance metrics for clustering
 – K-medoids
 – Hierarchical Clustering
How did we create 10 clusters?
Can compare apples vs oranges ...

• ... if they are in the same feature space.

• $X = \{x_1, x_2, \ldots, x_n\}$ is a dataset

• Each x_i is assumed to be a point in some d-dimensional space

 – $x_i = [x_{i1}, x_{i2}, \ldots, x_{id}]$

 – Each dimension represents a feature
K-means

- Partition a set of points $X = \{x_1, x_2, \ldots, x_n\}$ into k partitions $C = \{C_1, C_2, \ldots, C_k\}$ that minimizes

$$RSS(C) = \sum_{i=1}^{k} \sum_{j=1}^{n} a_{ij} \| x_j - \mu_i \|^2$$

Where a_{ij} is 1 if x_j is assigned to cluster C_i.
K-means

- Partition a set of points \(X = \{x_1, x_2, \ldots, x_n\} \) into \(k \) partitions \(C = \{C_1, C_2, \ldots, C_k\} \) that minimizes

\[
RSS(C) = \sum_{i=1}^{k} \sum_{j=1}^{n} a_{ij} \| x_j - \mu_i \|_2^2
\]

\[
\mu_i = [\mu_{i1}, \mu_{i2}, \ldots, \mu_{id}]
\]

\[
\mu_{ij} = \sum_{x \in C_i} \frac{x_j}{|C_i|}
\]

\(\mu_i \) is the mean of points in cluster \(C_i \).
K-means

- Partition a set of points \(X = \{x_1, x_2, \ldots, x_n\} \) into \(k \) partitions \(C = \{C_1, C_2, \ldots, C_k\} \) that minimizes

\[
RSS(C) = \sum_{i=1}^{k} \sum_{j=1}^{n} a_{ij} \|x_j - \mu_i\|^2
\]

Square of the straight line distance between \(x_j \) and its center \(\mu_i \).
Chicken-and-Egg problem

• How do we minimize $RSS(C)$?

 – If we know the cluster representatives (or the means), then it is easy to find the assignment function (which minimizes $RSS(C)$)
 • Assign point to the closest cluster representative
 – If we know the assignment function, computing the cluster representatives is easy
 • Compute the mean of the points in the cluster
K-means Algorithm

• Idea: Alternate these two steps.
 – Pick some initialization for cluster representatives μ^0.

 – E-step:
 Assign points to the closest representative in μ^i.

 – M-step:
 Recompute the representatives μ^{i+1} as means of the current clusters.
K-means: Initialization
K-means: Iteration 1
K-means: Iteration 2

"geo_data_head10000_run_2" using 1:2:3
K-means: Iteration 10

"geo_data_head10000_kmeans_10" using 1:2:3
Initialization

• Many heuristics
 – Random: K random points in the dataset
 – Farthest First:
 • Pick the first center at random
 • Pick the i^{th} center as the point “farthest away” from the last $(i-1)$ centers
 – K-means++: (see paper)
 • Nice theoretical guarantees on quality of clustering
Stopping

• Alternate E and M steps till the cluster representatives do not change.

• Guaranteed to converge
 – To a local optima …
 – … but not necessarily to a global optima

• Finding the optimal solution (with least RSS(C)) is NP-hard, even for 2 clusters.
Where k-means fails …
Scaling / changing features can help
Limitations of k-means

- Scaling/changing the feature space can change the solution.
- Cluster points into spherical regions.
- Number of clusters should be known apriori
Outline

• K-means Clustering

• Distance Metrics

• Using distance metrics for clustering
 – K-medoids
 – Hierarchical Clustering
Distance Metrics

• Function d that maps pairs of points x, y to real numbers (usually between 0, 1)

• Symmetric: $d(x,y) = d(y,x)$

• Triangle Inequality: $d(x,y) + d(y,z) \geq d(x,z)$

• Choice of distance metric is usually application dependent
Euclidean Distance

\[\|x - y\|_2 = \sqrt{\left(\sum_i (x_i - y_i)^2\right)} \]

- Straight line distance between two points \(x = [x_1, x_2, \ldots, x_d] \) and \(y = [y_1, y_2, \ldots, y_d] \)

- **K-means** minimizes the sum of the Euclidean distances between the points and the centers
 - We use the mean as a center
Minkowski \((L_p)\) Distance

\[
L_p = \left(\sum_i |x_i - y_i|^p \right)^{1/p}
\]

- \(L_2 = ?\)
Minkowski (L_p) Distance

$$L_p = \left(\sum_i |x_i - y_i|^p \right)^{1/p}$$

- $L_2 =$ Euclidean
- $L_1 =$?
Minkowski \((L_p)\) Distance

\[L_p = \left(\sum_i |x_i - y_i|^p \right)^{1/p} \]

- \(L_1 = \text{city block / Manhattan}\)
- \(L_\infty = ?\)
Vector-based Similarities

• Cosine Similarity (inverse of a distance)

\[
\frac{\sum_i x_i \cdot y_i}{\sqrt{\sum_i x_i^2 \cdot \sqrt{\sum_i y_i^2}}}
\]

– can be used in conjunction with TFIDF scores
Vector-based Similarities

- **Pearson’s Correlation Coefficient**
 - *cosine similarity on mean normalized vectors*

\[
\frac{\sum_i (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2} \sqrt{\sum_i (y_i - \bar{y})^2}}
\]
Set-based Distances

• Let A and B be two sets.

\[
\text{Jaccard}(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

– Again, a measure of similarity (inverse of distance)
Scaling / Changing features ...

• ... can be thought of as using a different distance function.

• How do we cluster for general distance functions?
Outline

• K-means Clustering

• Distance Metrics

• Using distance metrics for clustering
 – K-medoids
 – Hierarchical Clustering
K-means for general distance functions?

• Mean of a set of points does not always make sense.
 – *Mean of a set of movies or a set of documents?*

• Mean m of a set of points P minimizes the sum of Euclidean distances between m and every point in P
 – *Best cluster representative under Euclidean Distance*

 – The above is not true for a general distance metric.
K-medoids

- Allows a general distance metric $d(x,y)$.
- Same algorithm as K-means ...
- … but we don’t pick the new centers using mean of the cluster.
K-medoids

– Pick some initialization for cluster representatives μ^0.

– **E-step:**
 Assign points to the closest representative in μ^i.

– **M-step:**
 Recompute the representatives μ^{i+1} as the medoid, or one of the points in the cluster with the minimum distance from all the other points.
Medoid

- m is the medoid of a set of points P if

$$m = \underset{x \in P}{\text{argmin}} \left(\sum_{y \in P} d(x, y) \right)$$

Point that minimizes the sum of distances to all other points in the set.
Computing the medoid

\[m = \arg\min_{x \in P} \left(\sum_{y \in P} d(x, y) \right) \]

- Need to compute all \(|P|^2\) distances.

- In comparison, computing the mean in k-means only requires computing \(d\) averages involving \(|P|\) numbers each.
K-medoids summary

• Same algorithm as K-means, but uses medoids instead of means

• Centers are always points that appear in the original dataset

• Can use any distance measure for clustering.

• *Still need to know the number of clusters a priori*...
Outline

• K-means Clustering

• Distance Metrics

• Using distance metrics for clustering
 – K-mediods
 – Hierarchical Clustering
Hierarchical Clustering

• Rather than compute a single clustering, compute a family of clusterings.

• Can choose the clusters \textit{a posteriori}.
Agglomerative Clustering

• Initialize each point to its own cluster

• Repeat:
 – Pick the two clusters that are closest
 – Merge them into one cluster
 – Stop when there is only one cluster left
Example

Step 1: {1} {2} {3} {4} {5} {6} {7}
Step 2: {1} {2, 3} {4} {5} {6} {7}
Step 3: {1, 7} {2, 3} {4} {5} {6}
Step 4: {1, 7} {2, 3} {4, 5} {6}
Step 5: {1, 7} {2, 3, 6} {4, 5}
Step 6: {1, 7} {2, 3, 4, 5, 6}
Step 7: {1, 2, 3, 4, 5, 6, 7}

Example based on Ryan Tibshirani’s slides
Dendrogram

Height of a node is proportional to distance between children clusters

Individual points in the dataset

Entire dataset

Each node is a cluster
A horizontal cut in the dendrogram results in a clustering.
Distance between clusters

Step 1: \{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\}
Step 2: \{1\} \{2, 3\} \{4\} \{5\} \{6\} \{7\}
Step 3: \{1, 7\} \{2, 3\} \{4\} \{5\} \{6\}
Step 4: \{1, 7\} \{2, 3\} \{4, 5\} \{6\}

What are the next two closest clusters?
Single Linkage

\[d_{\text{single}}(C_1, C_2) = \min_{x \in C_1, y \in C_2} d(x, y) \]

Distance between two clusters is the distance between the two closest points in the clusters.

\{6\} is closer to \{4,5\} than \{2,3\} according to single linkage
Complete Linkage

Distance between two clusters is the distance between the two farthest points in the clusters.

\[d_{\text{complete}}(C_1, C_2) = \max_{x \in C_1, y \in C_2} d(x, y) \]

\{6\} is closer to \{2,3\} than \{4,5\} according to complete linkage.
Single vs Complete Linkage
Single Linkage
Single Linkage

Chaining: Single linkage can result in clusters that are spread out and not compact.
Complete Linkage
Complete Linkage

Complete linkage returns more compact clusters in this case.
Single vs Complete Linkage

![Graph showing single vs complete linkage distances with values 1.02, 5.02, and 6.99]
In both cases ...
Single Linkage
Complete Linkage

Complete Linkage is sensitive to outliers.
Average Linkage

\[d_{avg}(C_1, C_2) = \frac{\sum_{x \in C_1, y \in C_2} d(x, y)}{|C_1| \cdot |C_2|} \]

Distance between two clusters is the average distance between every pair of points in the clusters.
Hierarchical Clustering summary

• Create a family of hierarchical clusterings
 – Visualized using a dendrograms
 – Users can choose number of clusters after clustering is done.

• Can use any distance function

• Different choices for measuring distance between clusters.