1 Overview

In Lecture 13, we introduced the notion of perfect matchings in bipartite graphs. We also saw Hall’s Theorem, which tells us when a bipartite graph has a perfect matching. In this lecture, we give a proof of Hall’s Theorem.

2 Hall’s Theorem

In this section, we re-state and prove Hall’s theorem. Recall that in a bipartite graph \(G = (A \cup B, E) \), an \(A \)-perfect matching is a subset of \(E \) that matches every vertex of \(A \) to exactly one vertex of \(B \), and doesn’t match any vertex of \(B \) more than once.

Theorem 1 (Hall 1935). A bipartite graph \(G = (A \cup B, E) \) has an \(A \)-perfect matching if and only if the following condition holds:

\[
\forall S \subseteq A. |N(S)| \geq |S|,
\]

where \(N(S) = \{ v \in B : \exists u \in S. \{u, v\} \in E \} \).

Remark 1: If \(|A| = |B| \), then a matching is \(A \)-perfect if and only if it is perfect. So, in this case, Hall’s theorem tells us when a perfect matching exists. On the other hand, if \(|A| \neq |B| \), then \(G \) cannot contain a perfect matching because every edge of a matching pairs one vertex of \(A \) with exactly one vertex of \(B \). However, if \(|A| < |B| \), then \(G \) may still contain an \(A \)-perfect matching.

Remark 2: Theorem 1 is of the form \(P \leftrightarrow Q \), where \(P \) is the proposition “\(G \) has an \(A \)-perfect matching” and \(Q \) is known as Hall’s condition. In general, \(P \rightarrow Q \) states that \(Q \) is a necessary condition for \(P \). (To see why, consider the contrapositive \(\neg Q \rightarrow \neg P \).) Furthermore, \(Q \rightarrow P \) states that \(Q \) is a sufficient condition for \(P \). Thus, Hall’s theorem states that Hall’s condition is a necessary and sufficient condition for a bipartite graph to have an \(A \)-perfect matching.

Proof. We now begin the proof of Theorem 1.

Hall’s condition is necessary: Assume that \(G \) has an \(A \)-perfect matching, which we denote by \(M \). Let \(S \) be an arbitrary subset of \(A \). Since \(M \) is an \(A \)-perfect matching, \(M \) matches every vertex of \(S \) to exactly one vertex of \(B \), and no vertex of \(B \) is matched more than once. So if we restrict \(G \) to the edges in \(M \), the vertices of \(S \) each have a distinct neighbor in \(N(S) \). Since \(N(S) \) is defined using all the edges of \(G \) and \(M \) is only a subset of \(E \), this implies \(|N(S)| \geq |S| \).

Hall’s condition is sufficient: We will construct an \(A \)-perfect matching \(M \) by proceeding with induction on \(|A| \), assuming \(G \) satisfies Hall’s condition.

Base case: \(|A| = 1 \). Let \(a \) denote the sole vertex of \(A \). Hall’s condition tells us \(|N(\{a\})| \geq 1 \), which means \(a \) has at least one neighbor. We can set \(M = \{\{a, b\}\} \) where \(b \) is any neighbor of \(a \).
Then, M is an A-perfect matching: every vertex of A is matched, and no vertex of B is matched more than once.

Inductive hypothesis (IH): Assume that for all k such that $1 \leq k \leq |A| - 1$, any bipartite graph $H = (C \cup D, F)$ satisfying $|C| = k$ has a C-perfect matching if and only if H satisfies Hall’s condition on C, i.e., $\forall S \subseteq C. |N(S)| \geq |S|$.

Inductive step: We will now construct an A-perfect matching M in G, starting with $M = \emptyset$. Note that when G satisfies Hall’s condition, there are two possible cases: the inequality is strict for every S that is a strict subset of A (i.e., $\forall S \subset A. |N(S)| > |S|$), or there exists at least one $S \subset A$ such that $|N(S)| = |S|$.

1. **In the first case**, since $|N(S)|$ and $|S|$ are integers, we can assume
 $$\forall S \subset A. |N(S)| \geq |S| + 1.$$
 (1)

 We claim that the following procedure returns a perfect matching:

 1. Let u be an arbitrary vertex of A, and add any edge $e = \{u, v\}$ of E to M.
 2. Remove u, v, and all edges incident to u or v from G to construct graph G'.
 3. By the IH, G' has a matching M' that is $(A \setminus \{u\})$-perfect.
 4. Add the edges of M' to M, and return M.

 ![Figure 1: The original graph G with an arbitrary edge $\{u, v\}$ added to M (bold). The graph G' comprises the remaining vertices.](image1)

 ![Figure 2: Applying the IH on G' yields a matching M' that is $(A \setminus \{u\})$-perfect. The edges of the final matching M are in bold.](image2)

 For this procedure to be correct, we have to show several properties. First, to show that Step 1 is valid, we need to establish that the degree of any vertex $u \in A$ is at least 1. If this does not hold, then $N(\{u\}) = 0$, while $|\{u\}| = 1$, thereby violating Hall’s condition for $S = \{u\}$.

 Next, we show that G' satisfies Hall’s condition so that Step 3 is valid. Let S' be any subset of $A \setminus \{u\}$, and let $N'(S')$ denote its neighbors in G' (so $N'(S') \subseteq B \setminus \{v\}$). Notice that $|N'(S')| - 1 \geq |S'|$ because of (1). Since we only removed one vertex of B to construct G', $|N'(S')| \geq |N(S')| - 1$. Taken together, these inequalities imply $|N'(S')| \geq |S'|$, as desired.

 Now we must show that $M = M' \cup \{u, v\}$ is an A-perfect matching. Since M' matches every vertex of $A \setminus \{u\}$ and e matches u, every vertex of A is indeed matched by M. Furthermore,
vertex \(v \) is matched once because \(G' \) excludes \(v \), and the vertices of \(B \setminus \{ v \} \) are matched at most once because \(M' \) is a matching. Thus, \(M \) is an \(A \)-perfect matching.

(ii) In the second case, we assume there exists \(S \subset A \) such that \(|N(S)| = |S|\). We claim that the following procedure returns a perfect matching:

1. Partition \(A \) into \(S \) and \(\overline{S} = A \setminus S \) and \(B \) into \(N(S) \) and \(\overline{N(S)} = B \setminus N(S) \).
2. Let \(G_1 = (S \cup N(S), E_1) \) where \(E_1 \) denotes the edges of \(G \) among \(S \cup N(S) \). By the IH, \(G_1 \) has a matching \(M_1 \) that is \(S \)-perfect.
3. Let \(G_2 = (\overline{S} \cup \overline{N(S)}, E_2) \), where \(E_2 \) denotes the edges of \(G \) among \(\overline{S} \cup \overline{N(S)} \). By the IH, \(G_2 \) has a matching \(M_2 \) that is \(\overline{S} \)-perfect.
4. Let \(M = M_1 \cup M_2 \), and return \(M \).

As in the previous case, we must prove that \(G_1 \) and \(G_2 \) satisfy Hall’s condition so that Step 2 and Step 3 are valid. The graph \(G_1 \) is easier to handle: observe that there are no edges from \(S \) to \(\overline{N(S)} \). Thus, for any subset \(T \) of \(S \), its neighborhood in \(G_1 \) is exactly the same as its neighborhood in \(G \). Since \(G \) satisfies Hall’s condition, this implies \(G_1 \) also satisfies Hall’s condition.

Showing that \(G_2 \) also satisfies Hall’s condition is slightly trickier. For contradiction, suppose \(G_2 \) violates Hall’s condition. This means there exists \(X \subseteq S \) such that \(|Y| < |X|\), where \(Y \) denotes the neighborhood of \(X \) in \(G_2 \), i.e., \(Y = N(X) \cap \overline{N(S)} \). Now consider the set \(S \cup X \). This is a subset of \(A \), so since \(G \) satisfies Hall’s condition, we know that

\[
|N(S \cup X)| \geq |S \cup X|.
\]

Furthermore, since \(S \) and \(X \) are disjoint, \(|S \cup X| = |S| + |X|\). Also, notice that the only neighbors of \(S \cup X \) contained in \(\overline{N(S)} \) are the neighbors of \(X \), i.e., \(N(S \cup X) = N(S) \cup Y \). Finally, since \(N(S) \) and \(Y \) are disjoint, we know that \(|N(S) \cup Y| = |N(S)| + |Y|\). Putting this all together, we get

\[
|N(S \cup X)| = |N(S) \cup Y| = |N(S)| + |Y| = |S| + |Y| < |S| + |X| = |S \cup X|.
\]

\((\text{definitions of } S, X, Y) \)

\((\text{\(N(S) \) and \(Y \) are disjoint}) \)

\((\text{\(\text{defining property of } S \))} \)

\((\text{\(\text{defining property of } X \))} \)

\((\text{\(S \text{ and } X \) are disjoint}) \)
Thus, the set \(S \cup X \) violates Hall’s condition in the original graph \(G \) because \(|N(S \cup X)| < |S \cup X|\). This concludes the proof that \(G_2 \) satisfies Hall’s condition.

Now that we know \(G_1 \) and \(G_2 \) satisfy Hall’s condition, we must show that \(M = M_1 \cup M_2 \) is an \(A \)-perfect matching. Since \(M_1 \) is \(S \)-perfect and \(M_2 \) is \(\overline{S} \)-perfect, we know that \(M \) matches every vertex of \(S \cup \overline{S} = A \). Furthermore, no edges of \(M_1 \) and \(M_2 \) share an endpoint because \(M_1 \) and \(M_2 \) were obtained from two disjoint graphs \(G_1 \) and \(G_2 \). Thus, no vertex of \(B \) is matched twice by \(M \), so \(M \) is an \(A \)-perfect matching.

\[\square \]

3 Summary

In this lecture, we proved Hall’s theorem, one of the most well-known results in discrete mathematics. The proof uses induction in a manner that is more complicated than typical induction proofs we have seen.