1 Overview

In this lecture, we continue studying relations and functions.

2 Relations and Functions

Recall that a relation is defined between two sets as a subset of the Cartesian product: \(R \subseteq A \times B \) for sets \(A, B \). We use the following shorthand:

- \(A \text{ bij } B \) ("\(A \) has a bijection with \(B \)") if there exists a bijective total function \(R \subseteq A \times B \).
- \(A \text{ surj } B \) ("\(A \) has a surjection with \(B \)") if there exists a surjective total function \(R \subseteq A \times B \).
- \(A \text{ inj } B \) ("\(A \) has an injection with \(B \)") if there exists an injective total function \(R \subseteq A \times B \).

Suppose \(A \) and \(B \) are finite sets. Then we have the following cardinality rules:

1. \(A \text{ bij } B \) \(\iff \) \(|A| = |B| \)
2. \(A \text{ surj } B \) \(\iff \) \(|A| \geq |B| \)
3. \(A \text{ inj } B \) \(\iff \) \(|A| \leq |B| \)

Proof of Rule 1. Suppose \(A \text{ bij } B \). This means there exists \(R \subseteq A \times B \) such that \(R \) is a bijective total function. Since \(R \) is a total function, every element of \(A \) maps to exactly one element of \(B \). Thus, the total sum of in-degrees of elements of \(B \) is \(|A| \). Since \(R \) is a bijection, every element \(b \in B \) is mapped to exactly once. In other words, each \(b \in B \) has in-degree one. Equivalently, for all \(b \in B \), \(\text{in-degree}(b) = 1 \). We have the following:

\[
|A| = \sum_{b \in B} \text{in-degree}(b) = \sum_{b \in B} 1 = |B|
\]

Thus, \(|A| = |B| \) as desired.

Proof of Rule 2. Suppose \(A \text{ surj } B \). This means there exists \(R \subseteq A \times B \) such that \(R \) is a surjective total function. Since \(R \) is a total function, every element of \(A \) maps to exactly one element of \(B \). Thus, the total sum of in-degrees of elements of \(B \) is \(|A| \). Since \(R \) is a surjection, every element in \(B \) is either mapped to once or more than once. Equivalently, for all \(b \in B \), \(\text{in-degree}(b) \geq 1 \). We have the following:

\[
|A| = \sum_{b \in B} \text{in-degree}(b) \geq \sum_{b \in B} 1 = |B|
\]

Thus, \(|A| \geq |B| \) as desired.
Proof of Rule 3. Suppose $A \text{ inj } B$. This means there exists $R \subseteq A \times B$ such that R is a injective total function. Since R is a total function, every element of A maps to exactly one element of B. Thus, the total sum of in-degrees of elements of B is $|A|$. Since R is a injection, every element in B is either mapped once or not at all. Equivalently, for all $b \in B$, $\text{in-degree}(b) \leq 1$. We have the following:

$$|A| = \sum_{b \in B} \text{in-degree}(b) \leq \sum_{b \in B} 1 = |B|$$

Thus, $|A| \leq |B|$ as desired. \qed

Definition 1. The inverse relation, denoted R^{-1}, of a relation R is the set of ordered pairs obtained by reversing those of R. If $R \subseteq A \times B$:

$$aR^{-1}b \iff bRa.$$

Thus, $R^{-1} \subseteq B \times A$. Informally, R^{-1} is the relation obtained by changing the direction of arrows in the mapping diagram of R.

If R is a bijective total function, then R^{-1} is also a bijective total function. All out-degrees and in-degrees of R are exactly 1, so in R^{-1} the out-degrees become in-degrees, and vice versa. This leads to the following theorem:

Theorem 1. $A \text{ bij } B$ if and only if $B \text{ bij } A$.

Proof. Suppose $A \text{ bij } B$. By the cardinality rules, $A \text{ bij } B$ if and only if $|A| = |B|$. Equivalently, $|B| = |A|$. By the cardinality rules, $|B| = |A|$ if and only if $B \text{ bij } A$. In addition to existence, if we have a bijection from A to B, we can find a bijection from B to A. Let R be a bijective total function from A to B. Taking the inverse of R results in a bijective total function from B to A, as previously observed. \qed

We present some observations when A, B are finite sets.

Observation 2. If $A \text{ surj } B$ and $B \text{ surj } A$, then $A \text{ bij } B$.

This follows from the cardinality rules: $A \text{ surj } B$ implies $|A| \geq |B|$ and $B \text{ surj } A$ implies $|B| \geq |A|$. Together, these imply $|A| = |B|$. From our cardinality rules we know $|A| = |B|$ if and only if $A \text{ bij } B$.

Observation 3. Either $A \text{ surj } B$ or $B \text{ surj } A$.

This follows from the cardinality rules. For any finite sets A and B, either $|A| \leq |B|$ or $|B| \leq |A|$. In the first case, $|A| \leq |B|$ implies $B \text{ surj } A$ and in the latter case $|B| \leq |A|$ implies $A \text{ surj } B$.

Observation 4. $A \text{ surj } B$ if and only if $B \text{ inj } A$.

Again, we use the cardinality rules. $A \text{ surj } B$ if and only if $|A| \geq |B|$. We know $|B| \leq |A|$ if and only if $B \text{ inj } A$.

3 Properties of Relations on a Set

We say R is defined on set A if $R \subseteq A \times A$.

Example 1: Consider the set of positive integers, \mathbb{Z}^+. We can use comparators (such as $<$, \leq, $=$, \geq, $>$) to define relations on this set. Consider defining a relation using \leq. This means $(a, b) \in R \iff a \leq b$. For example, the pair $(3, 5) \in R$ since $3 \leq 5$, but $(5, 3) \notin R$ because $5 \not\leq 3$.

Example 2: Consider relation R defined by $<$ on \mathbb{Z}^+. Total? Yes, $\forall x \in \mathbb{Z}^+ x < x + 1 \Rightarrow (x, x + 1) \in R$.

Function? No, $3 < 4, 3 < 5, 3 < 6$, etc. An out-degree of an element could be larger than 1.

Injective? No, $1 < 5, 2 < 5, 3 < 5, 4 < 5$. The in-degree of an element could be larger than 1.

Surjective? No, there is no positive integer less than 1 so $(x, 1) \notin R$.

We introduce new properties of relations defined when the domain and codomain are the same set.

Definition 2. A relation R on set A is reflexive when every element is related to itself. Formally,

$$aRa \ \forall a \in A.$$

Definition 3. A relation R on set A is symmetric when a relates to b if and only if b relates to a. In other words,

$$aRb \iff bRa \ \forall a, b \in A.$$

Definition 4. A relation R on set A is transitive if for every pair (a, b) if b also relates to some element c, then a must also relate to c. Formally,

$$aRb \land bRc \Rightarrow aRc \ \forall a, b, c \in A.$$

Lemma 5. Consider a relation R defined on set A. Suppose $\forall a \in A, \exists b \in A$ s.t. aRb. If R is both symmetric and transitive, then R is reflexive.

Proof. Consider $a, b \in A$ such that $(a, b) \in R$. If $b = a$, we are done. Otherwise, by symmetry $(b, a) \in R$. By transitivity, since aRb and bRa, it must be that aRa. Since this holds for all $a \in A$, the relation is reflexive. □

Definition 5. A relation R is irreflexive when no element a relates to itself. Formally,

$$(a, a) \notin R \ \forall a \in A.$$

Note that a relation may be neither irreflexive nor reflexive.

Example 3: Suppose $A = \{1, 2\}$. Then $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$. Consider the following relations:

$$R_1 = \{(1, 2), (2, 1)\} \quad \text{irreflexive since } (1, 1), (2, 2) \notin R_1$$

$$R_2 = \emptyset \quad \text{irreflexive since } (1, 1), (2, 2) \notin R_2$$

$$R_3 = \{(1, 1), (1, 2), (2, 2), (2, 1)\} \quad \text{reflexive since } (1, 1), (2, 2) \in R_3$$

$$R_4 = \{(1, 1)\} \quad \text{neither reflexive nor irreflexive}$$

R_4 is not reflexive because $(2, 2) \notin R_4$. It is also not irreflexive because $(1, 1) \in R_4$.

8-3
Definition 6. A relation R is asymmetric iff
\[(a, b) \in R \Rightarrow (b, a) \notin R \ \forall a, b \in A.\]

Notice that if a relation is asymmetric it cannot contain pairs of the form (a, a) for any $a \in A$. Thus, if a relation is asymmetric then it is also irreflexive. Also notice that the only relation that is both symmetric and asymmetric is the empty set.

Example 4: Suppose $\mathbb{F}_2 = \{0, 1\}$. Then $\mathbb{F}_2 \times \mathbb{F}_2 = \{(0,0), (0,1), (1,0), (1,1)\}$. Consider the following relations:

- $R_1 = \{(0,0)\}$
 symmetric, transitive
- $R_2 = \emptyset$
 symmetric, asymmetric, transitive
- $R_3 = \{((0,0), (0,1), (1,0), (1,1)\}$
 symmetric, transitive
- $R_4 = \{(1,1), (0,0)(1,0)\}$
 transitive

In R_2, there are no pairs (a, b) in the relation for which we need to check the implications for symmetry, asymmetry, or transitivity. Recall that for a proposition $P \Rightarrow Q$, if P is false, then the implication is true. Notice that R_2 is not reflexive, since $(0,0), (1,1) \notin R_2$. Relation R_3 is the entire Cartesian product. Thus, it is symmetric and transitive since every possible pair is present. Relation R_4 is not symmetric, as $(1,0) \in R_4$, but $(0,1) \notin R_4$. It is also not asymmetric, as it has pairs $(0,0)$ and $(1,1)$. To establish that R_4 is transitive, consider $(1,1)$ and $(1,0)$. Transitivity implies that $(1,0) \in R_4$, which is true. Also consider $(1,0)$ and $(0,0)$; we have that $(1,0) \in R_4$. Thus, for any pairs of the form $(a, b), (b, c) \in R_4$ we know that $(a, c) \in R_4$ as well.

Asymmetry is a strong condition; it does not allow any pairs of the form (a, a) in the relation. A slightly weaker, but similar condition is anti-symmetry.

Definition 7. A relation R is anti-symmetric iff
\[(a, b) \in R \text{ and } a \neq b \Rightarrow (b, a) \notin R \ \forall a, b \in A.\]

Any relation which is asymmetric is also anti-symmetric. For example, a relation defined by $<$ on the positive integers is both asymmetric and anti-symmetric. However, \leq is not asymmetric, but it is anti-symmetric. We see this by observing that for any positive integer x, we have $x \leq x$ but $x \not< x$.

4 Summary

In this lecture, we used cardinality rules to prove theorems about relations defined on finite sets. We also considered the inverse relation. Finally, we studied relations defined on a set, and learned the rules for reflexivity, irreflexivity, symmetry, asymmetry, anti-symmetry, and transitivity.