Recall the following properties of relations R from a set A to a set B:

- **Function**: All elements of A have out-degree ≤ 1 (in the arrow diagram of R).
- **Total**: All elements of A have out-degree ≤ 1 (in the arrow diagram of R).
- **Injective**: All elements of B have in-degree ≤ 1 (in the arrow diagram of R).
- **Surjective**: All elements of B have in-degree ≥ 1 (in the arrow diagram of R).
- **Bijective**: All elements of B have in-degree $= 1$ (in the arrow diagram of R).

Recall the properties of relations on sets (where R is the relation on set A):

- **Reflexive**: $\forall a \in A. \ aRa$.
- **Irreflexive**: $\forall a \in A. \ \neg (aRa)$.
- **Transitive**: $\forall a, b, c \in A. \ aRb \land bRc \rightarrow a Rc$.
- **Symmetric**: $\forall a, b \in A. \ aRb \rightarrow b Ra$.
- **Asymmetric**: $\forall a, b \in A. \ aRb \rightarrow \neg (bRa)$.
- **Antisymmetric**: $\forall a, b \in A. \ aRb \land b Ra \rightarrow a = b$.

1. For any set A, we denote the power set of A by 2^A and is defined to be the set of all subsets of A.

 (a) What are the elements of 2^A where $A = \{1, 2, 3\}$?
 (b) What are the elements of 2^A where $A = \{\emptyset, \{\emptyset\}\}$.
 (c) What is $|2^A|$ for any finite set A?

 Solution:

 (a) $2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.
 (b) $2^A = \{\emptyset, \emptyset, \emptyset, \emptyset\}$.
 (c) $|2^A| = 2^{|A|}$.

2. For any sets $A, B, C,$ and D, what can be said about set $L = (A \cup B) \times (C \cup D)$ and $R = (A \times C) \cup (B \times D)$? Are they equal, is exactly one a subset of the other, etc.?
Solution: The answer is $R \subseteq L$ and $L \not\subseteq R$. To see the former, consider any element $(x, y) \in R$. By definition of \cup, $(x, y) \in A \times C$ or $(x, y) \in B \times D$. If $(x, y) \in A \times C$, then $x \in A$ and $y \in C$, so $x \in A \cup B$ and $y \in C \cup D$, and thus $(x, y) \in (A \cup B) \times (C \cup D)$. Similarly, if $(x, y) \in B \times D$, then $x \in B$ and $y \in D$, so $x \in A \cup B$ and $y \in C \cup D$, and thus $(x, y) \in (A \cup B) \times (C \cup D)$. In either case, $(x, y) \in (A \cup B) \times (C \cup D)$. Therefore, $R \subseteq L$.

To prove the latter, we can select the sets so that $L \not\subseteq R$; that is, we can ensure some element of L is not in R. Consider $C = B = \emptyset$, and $A = \{a\}$ and $D = \{d\}$. Then $L = \{a\} \times \{d\} = \{(a, d)\}$, but $R = \emptyset \cup \emptyset = \emptyset$. Thus, for these choices of the sets, $L \not\subseteq R$.

3. Provide total functions $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ with the following properties:

(a) f is neither surjective nor injective.
(b) f is surjective and not injective.
(c) f is injective and not surjective.
(d) f is surjective and injective.

Solution:

(a) $f(x) = 1$. Clearly f is not surjective since there exists no $x \in \mathbb{Z}$ such that $f(x) = 2$ and $2 \in \mathbb{Z}^+$, and thus the in-degree of 2 is zero. Furthermore, f is not injective since $f(1) = f(2) = 1$, and thus the in-degree of 1 is at least two.

(b) $f(x) = |x| + 1$. f is not injective since $f(1) = f(-1) = 2$, so the in-degree of 2 is at least two. f is surjective since for every $y \in \mathbb{Z}^+$, we can see that there is an $x \in \mathbb{Z}$ such that $f(x) = y$; in particular, this holds for $x = y - 1$.

(c) $f(x) = \begin{cases} 2x + 3 & \text{if } x \geq 0 \\ -2x & \text{otherwise} \end{cases}$

First, we prove that f is not surjective. This consists of showing that the in-degree of some $y \in \mathbb{Z}^+$ is zero. In particular, this is true for (only) $y = 1$. To see this, suppose there was such an $x \in \mathbb{Z}$ such that $f(x) = 1$ for sake of contradiction. If $x \geq 0$, then $f(x) = 2x + 3 \geq 3$, which is a contradiction. Otherwise, if $x < 0$, then $x \leq 1$ and thus $f(x) = -2x \geq 2$ which is a contradiction. Thus, the in-degree of 1 is zero.

To prove that f is injective, we show that the in-degree of every $y \in \mathbb{Z}^+$ is at most one. We’ve shown above that the in-degree of 1 is zero, so we only have to show this for the rest of the positive integers – those greater than two. First see that $f(x)$ is odd for any non-negative integer x, and that $f(x)$ is even for any negative integer x. Now suppose, for sake of contradiction, that there is some positive integer y that is greater than two which has in-degree at least two. Then there exists distinct $a, b \in \mathbb{Z}$ such that $f(a) = f(b) = y$. From the previous observation, if y is odd, then $a, b \geq 0$, and otherwise if y is even, then $a, b < 0$. In the former case, then $f(a) = f(b)$ implies $2a + 3 = 2b + 3$ which only holds when $a = b$, a contradiction. In the latter case, then $f(a) = f(b)$ implies $-2a = -2b$ which is only holds when $a = b$, a contradiction. Thus, the in-degree of all $y \in \mathbb{Z}$ is at most one, so f is surjective.
(d) \(f(x) = \begin{cases} 2x + 1 & \text{if } x \geq 0 \\ -2x & \text{otherwise.} \end{cases} \)

A similar proof for the injectivity of the function in part c implies that \(f \) is injective. The details are omitted here.

To see that \(f \) is surjective, we show that the in-degree of every \(y \in \mathbb{Z}^+ \) is at least one. Consider an arbitrary \(y \in \mathbb{Z}^+ \). If \(y \) is odd, see that \(y - 1 \) is odd and non-negative, so \((y - 1)/2 \) is non-negative and integral. Thus, \(f((y - 1)/2) = y \). If \(y \) is even, then \(-y/2 \) is negative and integral. Thus, \(f(-y/2) = y \). In either case, there is some \(x \in \mathbb{Z} \) such that \(f(x) = y \), so the in-degree of all \(y \in \mathbb{Z}^+ \) is at least one. We conclude that \(f \) is surjective.

\[\blacksquare \]

4. For each of the following relations, determine whether the relations are 1) reflexive, 2) irreflexive, 3) transitive, 4) symmetric, 5) antisymmetric, and 6) asymmetric. For parts d and e, list the elements of the relation.

(a) \(\emptyset \) on any non-empty set \(A \).
(b) \(A \times A \) on any non-empty set \(A \).
(c) \(\{(a,a), (a,b), (b,b), (b,c), (c,c)\} \) on set \(\{a,b,c,d\} \).
(d) \(\prec \) on set \(\{1,2,3,4\} \).
(e) \(\leq \) on set \(\{1,2,3,4\} \).
(f) \(\subseteq \) on set \(2^A \) for any non-empty set \(A \).

Solution:

(a) The relation is irreflexive, transitive, symmetric, antisymmetric, and asymmetric. For completion, we prove that each property holds or does not hold for this relation. Let \(A \) be a non-empty set, and let \(R = \emptyset \).

i. Let \(a \) be an arbitrary element of \(A \). Since \(R \) does not contain \((a,a) \), \(R \) is not reflexive.

ii. Since \(R \) does not contain \((a,a) \) for any \(a \in A \), \(R \) is irreflexive.

iii. Since \(R \) is empty, there does not exist any \(a, b, c \in A \) such that \(aRb \wedge bRc \), and thus \(aRb \wedge bRc \rightarrow aRc \) is (vacuously) true for all \(a, b, c \in A \). Thus, \(R \) is transitive.

iv. Since \(R \) is empty, there does not exist any \(a, b \in A \) such that \(aRb \), and thus \(aRb \rightarrow bRa \) is (vacuously) true for any elements \(a, b \in A \). Thus, \(R \) is symmetric.

v. Since \(R \) is empty, there does not exist any \(a, b \in A \) such that \(aRb \wedge bRa \), and thus \(aRb \wedge bRa \rightarrow a = b \) is (vacuously) true for any elements \(a, b \in A \). Thus, \(R \) is antisymmetric.

vi. Since \(R \) is empty, there does not exist any \(a, b \in A \) such that \(aRb \), and thus \(aRb \implies \neg(bRa) \) is (vacuously) true for any elements \(a, b \in A \). Thus, \(R \) is asymmetric.

(b) The relation is reflexive, transitive, and symmetric. For completion, we prove that each property holds or does not hold for this relation. Let \(A \) be a non-empty set, and let \(R = A \times A \).
i. Since aRb for all $a, b \in A$, clearly we have aRa for all $a \in A$, and thus R is reflexive.

ii. Since R is reflexive, R is not irreflexive.

iii. Consider any $a, b, c \in A$. Then we have aRc since xRy for all $x, y \in A$, and thus $aRb \land bRc \rightarrow aRc$ (regardless of whether $aRb \land bRc$ is true, which it is for this R). Thus, R is transitive.

iv. Consider any arbitrary elements $a, b \in A$. Clearly aRb and bRc, so $aRb \rightarrow bRc$ for all $a, b \in A$ and thus R is symmetric.

v. Since R is symmetric and R is non-empty, there is some $a, b \in A$ such that $aRb \land bRa$ and $a \neq b$. Thus, R is not antisymmetric.

vi. Since R is not antisymmetric, R is not asymmetric.

(c) The relation is antisymmetric.

(d) The relation is $\{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$. It is irreflexive, transitive, asymmetric, and antisymmetric.

(e) The relation is $\{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 1), (2, 2), (3, 3), (4, 4) \}$. It is reflexive, transitive, and antisymmetric.

(f) The relation is reflexive, transitive, and antisymmetric.