Recall the properties of relations on sets (where R is the relation on set A):

- **Reflexive**: $\forall a \in A. aRa$.
- **Irreflexive**: $\forall a \in A. \neg(aRa)$.
- **Transitive**: $\forall a, b, c \in A. aRb \land bRc \rightarrow aRc$.
- **Symmetric**: $\forall a, b \in A. aRb \rightarrow bRa$.
- **Asymmetric**: $\forall a, b \in A. aRb \rightarrow \neg(bRa)$.
- **Antisymmetric**: $\forall a, b \in A. aRb \land bRa \rightarrow a = b$.

1. Prove by ordinary induction that, for any natural number n, $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$.

2. Prove by ordinary induction that, for any natural number n, $3^{n+2} + 2^{4n+2}$ is divisible by 13. [Hint: Does this look familiar? How can you leverage your proof that used the WOP?]

3. Consider the relation R on $\{1, 2, 3, 4, 5\}$ is an equivalence relation:

 $$R = \{(1, 1), (1, 4), (4, 1), (4, 4), (5, 5), (2, 2), (2, 3), (3, 2), (3, 3)\}$$

 (a) Verify R is an equivalence relation.
 (b) What is $[3]$?
 (c) What is the partition induced by R?

4. Consider the relation R on set $A = \{n \in \mathbb{Z} \mid 1 \leq n \leq 10\}$:

 $$R = \{(x, y) \in A \times A \mid x = y \lor (x \text{ is odd} \land x < y)\}$$

 (a) Verify that R is a partial order.
 (b) What is the size of the largest chain in R?
 (c) What is the size of the largest antichain in R?
 (d) At least how many chains must any chain decomposition of R have?

5. Let A be a set and let R be a relation on A.

 (a) Prove or disprove that there exists an equivalence relation S on A such that $R \subseteq S$.
 (b) Prove or disprove that if R is reflexive, there exists a partial order S on A such that $S \subseteq R$.

1