Recall that a (undirected) graph G is defined as an ordered pair (V, E) where V is a finite non-empty set, and $E \subseteq V^{(2)}$ is a set of edges (two-element subsets of V). The elements of V are the vertices of G, and the elements of E are the edges of G. It is convention to refer to $|V|$ as n and $|E|$ as m.

An undirected bipartite graph G is defined as an ordered pair (V, E) where V can be partitioned into two sets A and B such that $E \subseteq \{\{u, v\} \mid u \in A, v \in B\}$.

1. Prove by induction that, for any undirected graph $G = (V, E)$, the number of edges in G is twice the sum of degrees of all vertices in G, i.e. $\sum_{v \in V} d(v) = 2m$.

Solution: We prove this by induction on the number of edges in the graph. That is, we will prove that for every non-negative integer m, the claim holds for any graph with m edges.

Let m be an arbitrary non-negative integer. If $m = 0$, then every vertex in any graph G with zero edges has zero degree, so the claim holds in this case.

Otherwise, $m > 0$. Assume that the claim holds for all undirected graphs with less than m edges. Let $e = \{a, b\}$ be some edge in G, and let $G' = (V, E \setminus \{e\})$ be the graph obtained by removing e from G. Then G' has $m - 1 < m$ edges, so $\sum_{v \in V} d'(v) = 2(m - 1)$ by the induction hypothesis where $d'(v)$ denotes the degree of $v \in V$ in graph G'. Note that $d'(u') = d(u)$ for every vertex $v \in V \setminus e$; that is, any vertex that is not an endpoint of e has the same degree in G and G'. Similarly, see that $d(a) = d'(a) + 1$ and $d(b) = d'(b) + 1$ since a and b, the endpoints of edge e, have one more incident edge in G than in G', namely e. It follows that $\sum_{v \in V} d'(v) = 2 + \sum_{v \in V} d'(v) = 2 + 2(m - 1) = 2m$ as desired.

2. Prove by induction that, for any undirected bipartite graph $G = (V, E)$ with bipartition A and B, $\sum_{v \in A} d(v) = \sum_{v \in B} d(v) = m$.

Solution: We will prove this by induction on the number of edges in the graph. That is, we will prove that for every non-negative integer m, the claim holds for any graph with m edges.

Let m be an arbitrary non-negative integer. If $m = 0$, then the degree of all vertices is also 0, so the claim holds in this case.

Otherwise, $m > 0$. Assume the claim holds for all undirected bipartite graphs with less than m edges. Consider any undirected bipartite graph $G = (V, E)$ with bipartition A and B and m edges. Let $e = \{a, b\}$ be an arbitrary edge in G for some $a \in A$ and $b \in B$, and let G' be the undirected graph obtained by removing edge e. Clearly G' is bipartite with bipartition A and B and has $m - 1$ edges, so $\sum_{v \in A} d'(v) = \sum_{v \in B} d'(v) = m - 1$ by the induction hypothesis where $d'(v)$ denotes the degree of vertex v in G'. Note that $d(v) = d'(v)$ for any vertex $v \notin \{a, b\}$, $d(a) = d'(a) + 1$, and $d(b) = d'(b) + 1$ since the only difference between G and G' is the edge $\{a, b\}$. It follows that $\sum_{v \in A} d(v) = 1 + \sum_{v \in A} d'(v)$ and $\sum_{v \in B} d(v) = 1 + \sum_{v \in B} d'(v)$ which immediately implies $\sum_{v \in A} d(v) = \sum_{v \in B} d(v)$ by the induction hypothesis. Finally, every vertex $v \in V$ is in exactly one of A or B, so from problem 1 we have $\sum_{v \in A} d(v) + \sum_{v \in B} d(v) = 2m$. It follows that $\sum_{v \in A} d(v) = \sum_{v \in B} d(v) = m$ as desired.
3. Prove by induction that, for any binary string \(s \) that begins with a 1 and ends with a 0, there is a 1 immediately before a 0 somewhere in \(s \).

Solution: We prove this by induction on the length of the string. That is, we will prove that for every integer \(n \geq 2 \), the claim holds for any string of length \(n \).

Let \(n \) be an arbitrary positive integer. If \(n = 2 \), there is only one string of length 2 that begins with a 1 and ends with a 0, namely \(s = 0.1 \). Clearly the claim holds for \(s \) in this case.

Otherwise \(n > 2 \). Assume the claim holds for all strings that begin with a 1, end with a 0, and have length \(k \) such that \(2 \leq k < n \). Let \(s \) be an arbitrary string of length \(n \) that begins with 1 and ends with 0. Since \(n > 2 \), \(s = 1.a.t.0 \) where \(a \in \{0,1\} \) and \(t \) is a string of length \(n - 3 \). There are two cases for \(a \):

(a) If \(a = 0 \), then \(s = 1.0.t.0 \) and the first 1 in \(s \) is immediately before the first 0 in \(s \), so we are done.

(b) If \(a = 1 \), then \(s = 1.1.t.0 \). Let \(u = 1.t.0 \) which has length \(n - 1 \), begins with a 1, and ends with a 0. Since \(2 \leq n - 1 < n \), the induction hypothesis implies \(u \) contains a 1 immediately before a 0, and thus \(s = 1.u \) contains a 1 immediately before a 0.

4. A rooted binary tree is **full** if every node has either zero or two children. Prove that any rooted full binary tree with \(i \) internal nodes (those with at least one child) has \(2^i + 1 \) total nodes.

Solution: We prove this by induction on the number of internal nodes. That is, we will prove that for every integer \(i \geq 0 \), the claim holds for any rooted full binary tree with \(i \) internal nodes.

Let \(i \) be an arbitrary non-negative integer. If \(i = 0 \), then the only tree with no internal nodes is the tree with a single root node which has no children. \(2^0 + 1 = 1 \) so the claim holds in this case.

Otherwise, \(i > 0 \). Assume that the claim holds for all rooted full binary trees with less than \(i \) internal nodes. Let \(T \) be an arbitrary rooted full binary tree with \(i \) internal nodes. Since \(i > 0 \), the root node of \(T \) has children, specifically two since \(T \) is full. Let the subtrees rooted at the two children be \(T_1 \) and \(T_2 \), and let \(j \) be the number of internal nodes in \(T_1 \). Any non-root node of \(T \) is internal in \(T \) if and only the node is internal in \(T_1 \) or \(T_2 \). This implies the number of internal nodes in \(T_2 \) is \((i - 1) - j \). Since \(T \) is full, \(T_1 \) and \(T_2 \) must be full. Since \(0 \leq j < i \) and \(0 \leq i - 1 - j < i \), the induction hypothesis implies \(T_1 \) has \(2j + 1 \) nodes and \(T_2 \) has \(2(i - 1 - j) + 1 = 2i - 2j - 1 \) nodes. It follows that \(T \) has \((2j + 1) + (2i - 2j - 1) + 1 = 2i + 1 \) nodes.